Abstract
JABAT supports designing and implementing A-Team architectures for solving difficult optimization problems. This paper presents several applications of JABAT as a tool for solving such problems. List of implementations and extensions of JABAT shows how useful and flexible the system can be. The paper summarises experiences of authors gained while developing various A-Teams. Some conclusions concerning such details of the A-Team model like the composition of the team of agents, the choice of rules determining how the agents interact with the population of solutions, or how synchronisation or cooperation of agents influence the quality of results are offered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. School of Information and Computer Science. University of California, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Barbucha, D.: Cooperative Solution to the Vehicle Routing. In: Jędrzejowicz, P., et al. (eds.) KES-AMSTA 2010. LNCS (LNAI), vol. 6071, pp. 180–189. Springer, Heidelberg (2010)
Barbucha, D., et al.: e-Jabat An Implementation of the Web-Based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.) Inteligent Agents in the Evolution of Web and Applications, vol. 5786, Springer, Heidelberg (2009)
Barbucha, D., et al.: Influence of the Working Strategy on A-Team Performance. In: Szczerbicki, E., et al. (eds.) Smart Information and Knowledge Management, pp. 83–102. Springer, Heidelberg (2010)
Barbucha, D., Jędrzejowicz, P.: An experimental investigation of the synergetic effect of multiple agents working together in the A-Team. System Science 34(2), 55–62 (2008)
Bellifemine, F., et al.: JADE. A White Paper, Exp. 3(3), 6–20 (2003)
Blum, J., Eskandarian, A.: Enhancing intelligent agent collaboration for flow optimization of railroad traffic. Transportation Research Part A 36, 919–930 (2002)
Cesta, A., Oddi, A., Smith, S.F.: A Constraint-Based Method for Project Scheduling with Time Windows. Journal of Heuristics 8, 108–136 (2002)
Correa, R., et al.: A parallel implementation of an asynchronous team to the point-to-point connection problem. Parallel Computing 29, 447–466 (2003)
Czarnowski, I.: Prototype selection algorithms for distributed learning. Pattern recognition 43(6), 2292–2300 (2010)
Czarnowski, I., Jędrzejowicz, P.: Agent-Based Non-distributed and Distributed Clustering. In: Perner, P. (ed.) Machine Learning and Data Mining in Pattern Recognition. LNCS, vol. 5632, pp. 347–360. Springer, Heidelberg (2009)
Czarnowski, I., Jędrzejowicz, P.: Agent-based Simulated Annealing and Tabu Search Procedures Applied to Solving the Data Reduction Problem (to appear, 2010)
Czarnowski, I., Jędrzejowicz, P.: An Agent-Based Simulated Annealing Algorithm for Data Reduction. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS (LNAI), vol. 6071, pp. 130–139. Springer, Heidelberg (2010)
Czarnowski, I., Jędrzejowicz, P., Wierzbowska, I.: A-Team Middleware on a Cluster. In: Hakansson, A., et al. (eds.) KES-AMSTA 2009. Lecture Notes in Computer Science, LNAI, vol. 5559, pp. 764–772. Springer, Heidelberg (2009)
Januzaj, E., Kriegel, H.P., Pfeifle, M.: Towards Effective and Efficient Distributed Clustering. In: Proceedings of International Workshop on Clustering Large Data Sets, 3rd International Conference on Data Mining (ICDM), pp. 49–58 (2003)
Jędrzejowicz, P., Wierzbowska, I.: Experimental Investigation of the Synergetic Effect Produced by Agents Solving Together Instances of the Euclidean Planar Travelling Salesman Problem. In: Jędrzejowicz, P., et al. (eds.) KES-AMSTA 2010. LNCS (LNAI), vol. 6071, pp. 160–169. Springer, Heidelberg (2010)
Jędrzejowicz, P., Ratajczak, E.: Agent-Based Approach to Solving the Resource Constrained Project Scheduling Problem. In: Beliczynski, B., et al. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 480–487. Springer, Heidelberg (2007)
Jędrzejowicz, P., Ratajczak-Ropel, E.: Agent Based Gene Expression Programming for Solving the RCPSP/max Problem. In: Kolehmainen, M., et al. (eds.) Adaptive and Natural Computing Algorithms. LNCS, vol. 5495, pp. 203–212. Springer, Heidelberg (2009)
Jędrzejowicz, P., Ratajczak, E.: Agent-Based, Self-tuning, Population Learning Algorithm for the Resource Constrained Project Scheduling. Foundations of Computing and Decision Sciences 32(3), 213–225 (2007)
Jędrzejowicz, P., Ratajczak-Ropel, E.: Solving the RCPSP/max Problem by the Team of Agents. In: Hakansson, A., et al. (eds.) KES-AMSTA 2009. Lecture Notes in Computer Science, LNAI, vol. 5559, pp. 734–743. Springer, Heidelberg (2009)
Jędrzejowicz, P., Wierzbowska, I.: JADE-Based A-Team Environment. In: Alexandrov, V.N., et al. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 719–726. Springer, Heidelberg (2006)
Meneses, C.N., Pardalos, P.M., Ragle, M.: Asynchronous Teams for probe selection problems. Discrete Optimization 5, 74–87 (2008)
Neruda, R., Krusina, P., Kudova, P., Rydvan, P., Beuster, G.: Bang 3: A Computational Multi Agent System. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT (2004)
PSPLIB, http://129.187.106.231/psplib
Rabak, C.S., Sichman, J.S.: Using A-Teams to optimize automatic insertion of electronic components. Advanced Engineering Informatics 17, 95–106 (2003)
Rachlin, J., et al.: A-Teams: An Agent Architecture for Optimization and Decision-Support. In: Muller, J.P., et al. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 261–276. Springer, Heidelberg (1999)
Raman, B.: Enhancing learning using feature and example selection. Texas A&M University, College Station, TX, USA (2003)
Ratajczak-Ropel, E.: Experimental Evaluation of the A-Team Solving Instances of the RCPSP/max Problem. In: Jędrzejowicz, P., et al. (eds.) KES-AMSTA 2010. LNCS (LNAI), vol. 6071, pp. 210–219. Springer, Heidelberg (2010)
Rozsypal, A., Kubat, M.: Selecting Representative Examples and Attributes by a Genetic Algorithm. Intelligent Data Analysis 7(4), 291–304 (2003)
Ruspini, E.H.: Numerical method for fuzzy clustering. Inform. Sci. 2(3), 19–150 (1970)
Skalak, D.B.: Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithm. In: Proceedings of the International Conference on Machine Learning, pp. 293–301 (1994)
Talukdar, S., et al.: Asynchronous teams: cooperation schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)
Talukdar, S.N., de Souza, P., Murthy, S.: Organizations for Computer-Based Agents. Engineering Intelligent Systems 1(2) (1993)
TILAB, http://jade.tilab.com/
Wilson, D.R., Martinez, T.R.: Reduction Techniques for Instance-based Learning Algorithm. Machine Learning 33(3), 257–286 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I. (2010). JABAT Middleware as a Tool for Solving Optimization Problems. In: Nguyen, N.T., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence II. Lecture Notes in Computer Science, vol 6450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17155-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-17155-0_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17154-3
Online ISBN: 978-3-642-17155-0
eBook Packages: Computer ScienceComputer Science (R0)