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We propose a new type system for functional logic programming which is more liberal

than the classical Damas-Milner usually adopted, but it is also restrictive enough to

ensure type soundness. Starting from Damas-Milner typing of expressions we propose a

new notion of well-typed program that adds support for type-indexed functions, a

particular form of existential types, opaque higher-order patterns and generic

functions—as shown by an extensive collection of examples that illustrate the

possibilities of our proposal. In the negative side, the types of functions must be

declared, and therefore types are checked but not inferred. Another consequence is that

parametricity is lost, although the impact of this flaw is limited as “free theorems” were

already compromised in functional logic programming because of non-determinism.

1. Introduction

Functional logic programming. Functional logic languages (Hanus, 2007) like Toy

(López-Fraguas and Sánchez-Hernández, 1999) or Curry (Hanus (ed.), 2006) have a

strong resemblance to lazy functional languages like Haskell (Hudak et al., 2007). A

remarkable difference is that functional logic programs (FLP) can be non-confluent, giv-

ing raise to so-called non-deterministic functions, for which a call-time choice semantics

(González-Moreno et al., 1999) is adopted. The following program is a simple example,

using natural numbers given by the constructors z and s—we follow syntactic conventions

of some functional logic languages where function and constructor names are lowercased,

and variables are uppercased—and assuming a natural definition for add :

f X → X f X → s X double X → add X X

Here, f is non-deterministic (f z evaluates both to z and s z ) and, according to call-time

choice, double (f z) evaluates to z and s (s z) but not to s z. Operationally, call-time
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choice means that all copies of a non-deterministic subexpression (f z in the example)

created during reduction share the same value.

In the HO-CRWL† approach to FLP (González-Moreno et al., 1997), followed by the

Toy system, programs can use HO-patterns (essentially, partial applications of function

or constructor symbols to other patterns) in left hand sides of function definitions. These

patterns are treated in a purely syntactic way, so problems of HO unification are avoided.

HO patterns correspond to an intensional view of functions, i.e., different descriptions

of the same ‘extensional’ function can be distinguished by the semantics. This is not

an exoticism: it is known (López-Fraguas et al., 2008) that extensionality is not a valid

principle within the combination of HO, non-determinism and call-time choice. It is also

known that HO-patterns cause some bad interferences with types: (González-Moreno

et al., 2001) and (López-Fraguas et al., 2010) considered that problem, and this paper

makes also some contributions in this sense.

All those aspects of FLP play a role in the paper, and Section 3 uses a formal setting

according to that. However, most of the paper can be read from a functional programming

perspective leaving aside the specificities of FLP. For example, our operational semantics

(Section 3.1) supports evaluation of open expressions, i.e., expressions containing free

variables, which are forbidden in functional programming. However this feature does not

play any relevant role in this paper, so readers can assume that all expressions to reduce

are closed.

Types, FLP and genericity. FLP languages are typed languages adopting classical

Damas-Milner types (Damas and Milner, 1982). However, their treatment of types is very

simple, far away from the impressive set of possibilities offered by functional languages like

Haskell: type and constructor classes, existential types, GADTs, generic programming,

arbitrary-rank polymorphism . . . (Hudak et al., 2007) Some exceptions to this fact are

some preliminary proposals for type classes in FLP (Moreno-Navarro et al., 1996; Lux,

2008), where in particular a technical treatment of the type system is absent.

By the term generic programming we refer generically to any situation in which a

program piece serves for a family of types instead of a single concrete type. Parametric

polymorphism as provided the by Damas-Milner system is probably the main contribu-

tion to genericity in the functional programming setting. However, in a sense it is ‘too

generic’ and leaves out many functions which are generic by nature, like equality. Type

classes (Wadler and Blott, 1989) were invented to deal with those situations. Some fur-

ther developments of the idea of generic programming (Hinze, 2006) are based on type

classes, while others (Hinze and Löh, 2007) have preferred to use simpler extensions of

Damas-Milner system, such as GADTs (Cheney and Hinze, 2003; Schrijvers et al., 2009).

We propose a modification of Damas-Milner type system that accepts natural definitions

of intrinsically generic functions like equality. The following example illustrates the main

points of our approach.

An introductory example. Consider a program that manipulates Peano natural num-

bers, booleans and polymorphic lists. Programming a function size to compute the num-

† CRWL (González-Moreno et al., 1999) stands for Constructor Based Rewriting Logic; HO-CRWL is
a higher order extension of it.
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ber of constructor occurrences in its argument is an easy task in a type-free language

with functional syntax:

size true → s z size false → s z

size z → s z size (s X) → s (size X)

size [ ] → s z size (X:Xs) → s (add (size X) (size Xs))

However, as far as bool, nat and [α] are different types, this program would be rejected

as ill-typed in a language using Damas-Milner system, since we obtain contradictory

types for different rules of size. This is a typical case where one wants some support

for genericity. Type classes certainly solve the problem if you define a class Sizeable and

declare bool, nat and [α] as instances of it. GADT-based solutions would add an explicit

representation of types to the encoding of size converting it into a so-called type-indexed

function (Hinze and Löh, 2007). This kind of encoding is also supported by our system

(see the show function in Example 3.1 and eq in Figure 4-b later), but the interesting

point is that our approach allows also a simpler solution: the program above becomes

well-typed in our system simply by declaring size to have the type ∀α.α→ nat, of which

each rule of size gives a more concrete instance. A detailed discussion of the advantages

and disadvantages of such liberal declarations appears in Sections 4 and 6.

The proposed well-typedness criterion for programs proceeds rule by rule and requires

only a quite simple additional check over usual Damas-Milner type inference performed

over both sides of each rule. Here, ‘simple’ does not mean ‘naive’. For example, imposing

the type of each function rule to be an instance of the declared type is a too weak

requirement, leading easily to type unsafety. To illustrate this, consider the rule f X →
not X with the assumptions f : ∀α.α → bool, not : bool → bool. The type of the rule is

bool→ bool, which is an instance of the type declared for f . However, that rule does not

preserve the type: the expression f z is well-typed according to f ’s declared type, but

reduces to the ill-typed expression not z. Our notion of well-typedness, roughly explained,

requires also that right-hand sides of rules do not restrict the types of variables more

than left-hand sides, a condition that is violated in the rule for f above. Definition 3.1

in Section 3.3 states that point with precision, and allows us to prove type soundness for

our system. As we will also see in Section 4, our conditions are in some technical sense

the most liberal suitable conditions under which reduction preserve types.

Contributions. We give now a list of the main contributions of our work, presenting

the structure of the paper at the same time:

— After some preliminaries, in Section 3 we present a novel notion of well-typed pro-

gram for FLP that induces a simple and direct way of programming type-indexed

and generic functions. The approach supports also a particular form of existential

types and GADT-like encodings, not available in current FLP systems. Moreover,

the use of HO-patterns is ensured to be type-safe, while in current FLP systems it is

either unrestricted (and therefore unsafe) or forbidden because of those type-safety

problems.

— Section 4 is devoted to the properties of our type system. We prove that well-typed

programs enjoy type preservation, an essential property for a type system, and we give

a result of maximal liberality while keeping type preservation; then by introducing
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failure rules to the formal operational calculus, we are also able to ensure the progress

property of well-typed expressions. Based on those results we also state syntactic

soundness of the type system, in the sense of (Wright and Felleisen, 1992).

— In Section 5 we give a significant collection of examples showing the interest of the

proposal. These examples cover type-indexed functions (with an application to the

implementation of type classes), existential types, opaque higher-order patterns and

generic functions. None of them is supported by existing FLP systems.

— The well-typedness criterion given in this paper provides a valuable alternative to

(López-Fraguas et al., 2010) in the management of type-unsoundness problems due

to the use of HO-patterns in function definitions. Both works, which are technically

compared at the end of Section 3.3, improve largely the solutions given previously in

(González-Moreno et al., 2001). As concrete advantages of the proposal in this paper,

we can type equality, solving known problems of opaque decomposition (González-

Moreno et al., 2001) (Section 5.1) and, most remarkably, we can type the apply func-

tion appearing in the HO-to-FO translation used in standard FLP implementations

(Section 5.2).

— Finally, we further discuss in Section 6 the strengths and weaknesses of our proposal,

and we end up with some conclusions in Section 7.

This is a revised and extended version of a previous conference paper (López-Fraguas

et al., 2010).

2. Preliminaries

We assume a signature Σ = CS ∪ FS , where CS and FS are two disjoint sets of data

constructor and function symbols resp., all of them with associated arity. We write CSn

(resp. FSn) for the set of constructor (function) symbols of arity n, and if a symbol h

is in CSn or FSn we write ar(h) = n. We consider a special constructor fail ∈ CS 0 to

represent pattern matching failure in programs as it is also proposed for GADTs (Cheney

and Hinze, 2003; Peyton Jones et al., 2006). We also assume a denumerable set DV of

data variables X. The notation on stands for a sequence of n objects o1, . . . , on, where

oi is the ith element in the sequence. Figure 1 shows the syntax of patterns ∈ Pat—our

notion of values—and expressions ∈ Exp. The role of let-bindings is to express sharing of

subexpressions, as corresponds to call-time choice semantics. We split the set of patterns

in two: first order patterns FOPat 3 fot ::= X | c fot1 . . . fotn where ar(c) = n, and

higher-order patterns HOPat = Pat r FOPat, i.e., patterns containing some partial

application of a symbol of the signature. Expressions c e1 . . . en are called junk if n > ar(c)

and c 6= fail , and expressions f e1 . . . en are called active if n ≥ ar(f). The set fv(e) of free

variables of an expression e is defined in the usual way as the set of variables in e which are

not bound by any let construction; notice that free variables in let-bindings are defined

as fv(let X = e1 in e2) = fv(e1) ∪ (fv(e2) r {X}), corresponding to the fact that we do

not consider recursive let-bindings. We say that an expression e is ground if fv(e) = ∅. A

one-hole context is defined as C ::= [ ] | C e | e C | let X = C in e | let X = e in C. A data

substitution θ is a finite mapping from data variables to patterns: [Xn/tn]. Substitution

application over data variables and expressions is defined in the usual way. The empty
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Data variables X,Y, Z, . . .

Type variables α, β, γ, . . .

Data constructors c

Type constructors C

Function symbols f

Symbol s ::= X | c | f
Non variable symbol h ::= c | f
Expressions e ::= X | c | f | e e

| let X = e in e

Patterns t ::= X

| c t1 . . . tn if n ≤ ar(c)
| f t1 . . . tn if n < ar(f)

Data substitution θ ::= [Xn/tn]

Program rule R ::= f t→ e (t linear)

Program P ::= {R1, . . . , Rn}

Simple Types τ ::= α

| C τ1 . . . τn if ar(C) = n

| τ1 → τ2
Type Schemes σ ::= ∀αn.τ

Type substitution π ::= [αn/τn]

Assumptions A ::= {s1 : σ1, . . . , sn : σn}

Fig. 1. Syntax of expressions, programs and types.

substitution is written as id . A program rule R is defined as f tn → e (we also refer

to rules as f tn → r or l → r) where the set of patterns tn is linear (there is not

repetition of variables), ar(f) = n and fv(e) ⊆
⋃n
i=1 var(ti). Therefore, extra variables

are not considered in this paper. Since the constructor fail is an artifact conceived to deal

properly with progress properties of the type system in Section 4, fail is not supposed to

occur in program rules, although it would not produce any technical problem. A program

P is a set of program rules: {R1, . . . , Rn}(n ≥ 0).

For the types we assume a denumerable set T V of type variables α and a countable

alphabet T C =
⋃
n∈N T C

n of type constructors C. As before, if C ∈ T Cn then we write

ar(C) = n. Figure 1 shows the syntax of simple types τ and type-schemes σ. The set of

free type variables (ftv) of a simple type τ is var(τ), and for type-schemes ftv(∀αn.τ) =

ftv(τ)r{αn}. A type-scheme σ is closed if ftv(σ) = ∅. A set of assumptions A is {sn : σn}
fulfilling that A(fail) = ∀α.α and for every c in CSn r {fail}, A(c) = ∀α.τ1 → . . . →
τn → (C τ ′1 . . . τ

′
m) for some type constructor C with ar(C) = m. Therefore the type

assumptions for constructors must correspond to their arity and, as in (Cheney and

Hinze, 2003; Peyton Jones et al., 2006), the constructor fail can have any type. A(s)

denotes the type-scheme associated to symbol s, and the union of sets of assumptions is

denoted by ⊕: A⊕A′ contains all the assumptions in A′ and the assumptions in A over
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(Fapp) f t1θ . . . tnθ � rθ, if (f t1 . . . tn → r) ∈ P

(Ffail) f t1 . . . tn � fail , if n = ar(f) and @(f t′1 . . . t
′
n → r) ∈ P such that f t′1 . . . t

′
n

and f t1 . . . tn are unifiable

(FailP) fail e � fail

(LetIn) e1 e2 � let X = e2 in e1 X, if e2 is junk, active, variable application

or let rooted, for X fresh

(Bind) let X = t in e � e[X/t]

(Elim) let X = e1 in e2 � e2, if X 6∈ fv(e2)

(Flat) let X = (let Y = e1 in e2) in e3 � let Y = e1 in (let X = e2 in e3),

if Y 6∈ fv(e3)

(LetAp) (let X = e1 in e2) e3 � let X = e1 in e2 e3, if X 6∈ fv(e3)

(Contx) C[e] � C[e′], if C 6= [ ], e� e′ using any of the previous rules

Fig. 2. Higher order let-rewriting relation with pattern matching failure �

symbols not appearing in A′ (notice that ⊕ is not commutative). For sets of assumptions,

free type variables are defined as ftv({sn : σn}) =
⋃n
i=1 ftv(σi). Notice that type-schemes

for data constructors may be existential, i.e., they can be of the form ∀αn.τm → τ where

(
⋃m
i=1 ftv(τi)) r ftv(τ) 6= ∅. A type substitution π is a finite mapping from type variables

to simple types [αn/τn]. Application of type substitutions to simple types is defined in

the natural way and for type-schemes consists in applying the substitution only to their

free variables. This notion is extended to set of assumptions in the obvious way. We say

that σ is an instance of σ′ if σ = σ′π for some π. A simple type τ ′ is a generic instance

of σ = ∀αn.τ , written σ � τ ′, if τ ′ = τ [αn/τn] for some τn. Finally, τ ′ is a variant of

σ = ∀αn.τ , written σ �var τ
′, if τ ′ = τ [αn/βn] and βn are fresh type variables.

3. Formal setup

3.1. Operational semantics

The operational semantics of our programs is based on let-rewriting (López-Fraguas et al.,

2008), a high level notion of reduction step devised to express call-time choice through

the use of let-bindings that represent subexpression sharing. For this paper, we have

extended let-rewriting with two rules for managing failure of pattern matching (Figure

2), playing a role similar to the rules for pattern matching failure in GADTs (Cheney

and Hinze, 2003; Peyton Jones et al., 2006). We write � for the extended relation and

P ` e � e′ (P ` e �∗ e′ resp.) to express one step (zero or more steps resp.) of �
using the program P. By nfP(e) we denote the set of normal forms reachable from e,

i.e., nfP(e) = {e′ | P ` e�∗ e′and e′ is not �-reducible}. Notice that let-rewriting can

reduce expressions with free variables (open expressions), although it does not bind them

to values. However this support for open expressions does not play any relevant role in

this paper, which can be understood as if all expressions to reduce were closed.

The new rule (Ffail) generates a failure when no program rule can be used to reduce
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a function application. Notice the use of syntactic unification‡ instead of simple pattern

matching to check that the variables of the expression will not be able to match the

patterns in the rule. This allows us to perform this failure test locally without having

to consider the possible bindings for the free variables in the expression caused by the

surrounding context. Otherwise, these should be checked in an additional condition for

(Contx). To see that, consider for instance the program

true ∧X → X false ∧X → false

and the expression let Y = true in (Y ∧true). The subexpression Y ∧true unifies with the

function rule left-hand side true∧X, so no failure is generated. If we use pattern matching

as condition without considering the binding Y = true, a failure is incorrectly generated

since none of the left-hand sides true∧X and false∧X matches the subexpression Y ∧true.
Besides, using unification in (Ffail) also contributes to early detection of proper failures.

Consider the program P2 = {f true false → true, loop → loop} and the expression

let Y = loop in f Y Y . Since f Y Y does not unify with f true false, (Ffail) detects a

failure, while other operational approaches to failure in FLP (Sánchez-Hernández, 2006)

would lead to divergence.

Finally, rule (FailP) is used to propagate the pattern matching failure when fail is

applied to another expression.

Extending the let-rewriting relation of (López-Fraguas et al., 2008) has been motivated

by the desire of distinguishing two kinds of failing reductions that occur in an untyped

setting:

— Reductions that cannot progress because of an incomplete function definition, in the

sense that the patterns of the function rules do not cover all possible cases for data

constructors. A prototypical example is given by the definition head (x:xs)→ x, where

the case head [ ] is (intentionally) missing. Similar to what happens in FP systems

like Haskell, we expect (head [ ]) to give raise to a failing reduction, but not to a

type error. A difference is that in FP an attempt to evaluate (head [ ]) will result in

a run-time error, while in FLP systems rather than an error this is a silent failure in

a possible space of non-deterministic computations that is managed by backtracking.

That justifies our choice of the word fail instead of error.

— Reductions that cannot progress (get stuck) because of a genuine type error, as hap-

pens for junk expressions that apply a non-functional value to some arguments (e.g.

true false).

Our failure rules (Ffail) and (FailP) try to accomplish with the first kind of reductions.

Reductions of the second kind remain stuck even with the added failure rules. As we will

see in Section 4, this can only happen to ill-typed expressions. At the end of that section,

once the type system and its formal properties have been presented, we further discuss

the issues of fail -ended and stuck reductions.

‡ As mentioned in Section 1, patterns in our setting (both first and higher order patterns) are treated

in a purely syntactic way, so syntactic unification is used instead of more complex HO unification

procedures.
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[ID] A ` s : τ
if A(s) � τ

[APP]

A ` e1 : τ1 → τ
A ` e2 : τ1
A ` e1 e2 : τ

[LET]

A ` e1 : τx
A⊕ {X : Gen(τx,A)} ` e2 : τ

A ` let X = e1 in e2 : τ

[iID]
A � s : τ |id

if A(s) �var τ

[iAPP]

A � e1 : τ1|π1

Aπ1 � e2 : τ2|π2

A � e1 e2 : απ|π1π2π

if α fresh and π = mgu(τ1π2, τ2 → α)

[iLET]

A � e1 : τx|πx

Aπx ⊕ {X : Gen(τx,Aπx)} � e2 : τ |π
A � let X = e1 in e2 : τ |πxπ

a) Type derivation rules b) Type inference rules

Fig. 3. Type system

3.2. Type derivation and inference for expressions

Both derivation and inference rules are based on those presented in (López-Fraguas et al.,

2010). Our type derivation rules for expressions (Figure 3-a) correspond to the well-

known variation of Damas-Milner’s (Damas and Milner, 1982) type system with syntax-

directed rules, so there is nothing essentially new here—the novelty will come from the

notion of well-typed program given in Definition 3.1 below. Gen(τ,A) is the closure or

generalization of τ wrt. A, which generalizes all the type variables of τ that do not appear

free in A. Formally: Gen(τ,A) = ∀αn.τ where {αn} = ftv(τ) r ftv(A). We say that e is

well-typed under A, written wtA(e), if there exists some τ such that A ` e : τ ; otherwise

it is ill-typed.

The type inference algorithm � (Figure 3-b) follows the same ideas as the algorithm

W (Damas and Milner, 1982). We have given a relational style to type inference to

show the similarities with the typing rules. Nevertheless, the inference rules represent an

algorithm that fails if no rule can be applied. This algorithm accepts as inputs a set of

assumptions A and an expression e, and returns a simple type τ and a type substitution

π. Intuitively, τ is the “most general” type which can be given to e, and π is the “most

general” substitution we have to apply to A for deriving any type for e.

3.3. Well-typed programs

The next definition—the most important in the paper—establishes the conditions that a

program must fulfil to be well-typed in our proposal. This definition formalizes in terms of

type derivations and substitutions the intuitive well-typedness idea explained in Section

1: right-hand sides of program rules must not restrict the types of variables more than

left-hand sides.

Definition 3.1 (Well-typed program wrt. A). The program rule f t1 . . . tm → e

is well-typed wrt. a set of assumptions A, written wtA(f t1 . . . tm → e), iff there exist

πL, τL, πR and τR such that:



A Liberal Type System for Functional Logic Programs 9

i) πL is the most general substitution such that wt(A⊕{Xn:αn})πL
(f t1 . . . tm), and τL is

the most general type derivable for f t1 . . . tm under the assumptions (A⊕{Xn : αn})πL.

ii) πR is the most general substitution such that wt(A⊕{Xn:βn})πR
(e), and τR is the most

general type derivable for e under the assumptions (A⊕ {Xn : βn})πR.

iii) ∃π.(τL, αnπL) = (τR, βnπR)π

iv) AπL = A, AπR = A, Aπ = A

where {Xn} = var(f t1 . . . tm) and {αn}, {βn} are fresh type variables. A program P is

well-typed wrt. A, written wtA(P), iff all its rules are well-typed.

The first two points check that both right and left-hand sides of the rule can indepen-

dently have valid types by assigning some types to variables, obtaining the most general

ones for them in both sides, but not imposing any relationship between them. This is left

to the third point, which is the most important one. It checks that the obtained most

general types for the right-hand side and the variables appearing in it are more general

than the obtained ones for the left-hand side. This point, which avoids that right-hand

sides restrict the types of variables more than left-hand sides, guarantees the type preser-

vation property (i.e., that the expression resulting after a reduction step has the same

type as the original one) when applying a program rule. Moreover, this point ensures a

correct management of opaque variables (López-Fraguas et al., 2010)—either introduced

by the presence of existentially quantified constructors or HO-patterns—which results in

the support of a particular variant of existential types (Läufer and Odersky, 1994)—see

Section 5.2 for more details. Finally, the last point guarantees that free variables in the

set of assumptions are not modified by neither the most general typing substitutions of

both sides nor the matching substitution. In practice, this point holds trivially if type

assumptions for program functions are closed, as it is usual. Points i) and ii) in the

previous definition have are very declarative formulation, but are not particularly well

suited to the effective implementation of the well-typedness check. Thanks to the close

relationship between type derivation and inference for expressions—soundness and com-

pleteness, Theorems A.1 and A.2 in page 26—we can recast points i) and ii) of Definition

3.1 in a more operational and oriented to implementation style.

Definition 3.2 (Well-typed program wrt. A; alternative formulation).

The program rule f t1 . . . tm → e is well-typed wrt. a set of assumptions A, written

wtA(f t1 . . . tm → e), iff there exist πL, τL, πR and τR such that:

i) A⊕ {Xn : αn} � f t1 . . . tm : τL|πL
ii) A⊕ {Xn : βn} � e : τR|πR
iii) ∃π.(τL, αnπL) = (τR, βnπR)π

iv) AπL = A, AπR = A, Aπ = A

where {Xn} = var(f t1 . . . tm) and {αn}, {βn} are fresh type variables. A program P is

well-typed wrt. A, written wtA(P), iff all its rules are well-typed.

Now, conditions i) and ii) use the algorithm of type inference for expressions, iii)

is just matching, and iv) holds trivially in practice, as we have noticed before; so the
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implementation is straightforward. The equivalence between both definitions of well-

typed rule follows easily from the following result about type derivation and inference:

Lemma 3.1. π is the most general substitution that enables to derive a type for the

expression e under the assumptions A, and τ is the most general derivable type for e

(Aπ ` e : τ)⇐⇒ ∃π′, τ ′ such that A � e : τ ′|π′, where π, π′ (τ, τ ′ respectively) are equal

up to variable renaming.

Proof. Straightforward based on soundness and completeness of the inference relation

wrt. to type derivation (Theorem A.1 and Theorem A.2 in Appendix A).

Both definitions of well-typed rule present some similarities with the notion of typeable

rewrite rule for Curryfied Term Rewriting Systems in (van Bakel and Fernández, 1997).

In that paper the key condition is that the principal type for the left-hand side allows

to derive the same type for the right-hand side. This condition is similar to points 1–3

of our definition, which force the most general types obtained for the right-hand side

to be more general than those inferred for the right-hand side. However, Definition 3.2

provides a more effective procedure to check well-typedness than the notion of typeable

rewrite rule. On the other hand (van Bakel and Fernández, 1997) considers a different

setting that includes intersection types, not addressed in our work.

Example 3.1 (Well and ill-typed rules and expressions). Let us consider the

following assumptions and program:

A ≡ { z : nat, s : nat→ nat, true : bool, false : bool, (:) : ∀α.α→ [α]→ [α],

[ ] : ∀α.[α], rnat : repr nat, id : ∀α.α→ α, snd : ∀α, β.α→ β → β,

unpack : ∀α, β.(α→ α)→ β, eq : ∀α.α→ α→ bool, showNat : nat→ [char],

show : ∀α.repr α→ α→ [char], f : ∀α.bool→ α, flist : ∀α.[α]→ α }

P ≡ { id X → X, snd X Y → Y, unpack (snd X)→ X, eq (s X) z → false,

show rnat X → showNat X, f true→ z, f true→ false,

f list [z]→ s z, flist [true]→ false }

It is easy to see that the rules for the functions id and snd are well-typed. The function

unpack is taken from (González-Moreno et al., 2001) as a typical example of the type

problems that HO-patterns can produce. According to Definition 3.2 the rule of unpack is

not well-typed since the tuple (τL, αnπL) inferred for the left-hand side is (γ, δ), which is

not matched by the tuple (η, η) inferred as (τR, βnπR) for the right-hand side. This shows

the problem of existential type variables that “escape” from the scope. If that rule was

well-typed then type preservation could not be granted anymore—e.g. consider the step

unpack (snd true) � true, where the type nat can be assigned to unpack (snd true) but

true can only have type bool. The rule for eq is well-typed because the tuple inferred for

the right-hand side, (bool, γ), matches the one inferred for the left-hand side, (bool, nat).

In the rule for show the inference obtains ([char], nat) for both sides of the rule, so it is

well-typed.

The functions f and flist show that our type system cannot be forced to accept an

arbitrary function definition by generalizing its type assumption. For instance, the first
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rule for f is not well-typed since the type nat inferred for the right-hand side does not

match γ, the type inferred for the left-hand side. The second rule for f is also ill-typed for

a similar reason. If these rules were well-typed, type preservation would not hold: consider

the step f true � z; f true can have any type, in particular bool, but z can only have

type nat. Both rules of function flist are well-typed, however its type assumption cannot

be made more general for its first argument: it can be seen that there is no τ such that

the rules for flist remain well-typed under the assumption flist : ∀α.α→ τ .

With the previous assumptions, expressions like id z true or snd z z true that lead to

junk are ill-typed, since the symbols id and snd are applied to more expressions than the

arity of their types. Notice also that although our type system accepts more expressions

that may produce pattern matching failures than classical Damas-Milner, it still rejects

many such expressions, that typically correspond to programming errors. Examples of

this are flist z and eq z true, which are ill-typed since the type of the function prevents

the existence of program rules that can be used to rewrite these expressions: flist can

only have rules treating lists as argument and eq can only have rules handling both

arguments of the same type.

In (López-Fraguas et al., 2010) we extended Damas-Milner types with some extra

control over HO-patterns, leading to another definition of well-typed programs, written

wtoldA (P) here. All valid programs in (López-Fraguas et al., 2010) are still valid:

Theorem 3.1. If wtoldA (P) then wtA(P).

Proof. See page 27 in Appendix A.

To further appreciate the difference between the two approaches, notice that all the

examples in Section 5 are rejected as ill-typed by (López-Fraguas et al., 2010). The

purpose of the two systems is different: in this paper we attempt deliberately to go beyond

Damas-Milner, while (López-Fraguas et al., 2010) only aims to deal safely with programs

using HO-patterns in rules, but keeping the behavior of Damas-Milner otherwise. In

correspondence to that, in (López-Fraguas et al., 2010) the types of program functions

can be inferred, while in the present work they must be explicitly declared.

4. Properties of the type system

We will follow two alternative approaches for proving type soundness of our system. First,

we prove the theorems of progress and type preservation similar to those that play the

main role in the type soundness proof for GADTs (Cheney and Hinze, 2003; Peyton Jones

et al., 2006). After that, we follow a syntactic approach similar to (Wright and Felleisen,

1992). The first result, progress, states that well-typed ground expressions are either

patterns or expressions reducible by let-rewriting.

Theorem 4.1 (Progress). If wtA(P), wtA(e) and e is ground, then either e is a pattern

or ∃e′. P ` e� e′.

Proof. By induction over the structure of e, see page 29 in Appendix A for the complete

proof.
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In order to relate well-typed expressions and evaluation we need a type preservation—or

subject reduction—result, stating that in well-typed programs reduction does not change

types.

Theorem 4.2 (Type Preservation). If wtA(P), A ` e : τ and P ` e � e′, then

A ` e′ : τ .

Proof. By case distinction over the rule of the let-rewriting relation � used to reduce

e to e′. The detailed proof can be found in page 31 in Appendix A.

This result shows that the degree of liberality given to our type system is not arbitrary:

types are certainly more liberal than in the usual Damas-Milner system, but they are also

restricted enough as to ensure that types are not lost during reduction. In Example 3.1

we saw examples of ill-typed programs for which type preservation fails. At this point, an

interesting question arises: could the type system be even more relaxed but still keep type

preservation? The following results shows that in a certain sense the answer is ‘no’, and

therefore our well-typedness conditions are as liberal as possible without compromising

type preservation.

Theorem 4.3 (Maximal liberality of well-typedness conditions).

Let A be a closed set of assumptions, and assume that P is a program which is not well-

typed wrt. A, but such that every rule R ∈ P verifies the condition i) of well-typedness

in Definition 3.2. Then there exists a rule (f t1 . . . tm → e) ∈ P with variables Xn and

there exist types τn, τ such that A⊕ {Xn : τn} ` f t1 . . . tm : τ and f t1 . . . tm � e but

A⊕ {Xn : τn} 6` e : τ .

Proof. By case distinction on the condition of wtA(P) that fails. The complete proof

can be found in page 32 in Appendix A.

By requiring the condition that all rules in the program verify condition i) of program

well-typedness, we ensure that ill-typedness of the program is not due to a badly typed

left-hand side of a rule—an uninteresting case from the point of view of type preservation

under reduction—but must be due to a failure of conditions ii) or iii)—as condition

iv) does not fail for closed assumptions—that is, due to a lack of right correspondence

between some left-hand side and its companion right-hand side. We remark that the

proof of Theorem 4.3 is constructive in the sense that, for a program in the hypothesis of

the theorem, it provides explicitly a reduction step and types which witness the failure

of type preservation.

Theorem 4.3 also indicates that, in a sense, our notion of well-typed rule captures essen-

tially the intuitive idea that a rule preserves types when applied to reduce an expression.

That intuition becomes indeed a provable technical result by giving a declarative defini-

tion of type-preserving rule and proving that, under certain reasonable conditions, this

notion is equivalent to well-typedness.

Definition 4.1 (Type-preserving rule). Given a set of assumptions A, we say that

a rule f t1 . . . tm → e preserves types if
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(i) its left-hand side admits some type, i.e., wtA⊕{Xn:τn}(f t1 . . . tm) for some τn, where

Xn are the variables appearing in the rule—{Xn} = fv(f t1 . . . tm).

(ii)A ` f t1θ . . . tmθ : τ =⇒ A ` eθ : τ , for any substitution θ and type τ .

We impose the first condition to avoid the case of rules which do not break type preser-

vation trivially because their left-hand sides are not well-typed, so that A 6` f t1θ . . . tmθ :

τ for any τ .

The notions of well-typed rules and type-preserving rules are equivalent, but only for

a certain kind of assumptions which are rich enough to build monomorphic terms of any

given type, as formalized in the following definition.

Definition 4.2 (Type-complete set of assumptions). A set of assumptions A is

called type-complete if for each simple type τ there exists a pattern tτ which can only

have that type, i.e., A ` tτ : τ and A 6` tτ : τ ′ for all τ ′ 6= τ .

Now, we can prove the announced equivalence result, showing that the definition of

well-typed rule capture algorithmically the precise declarative notion of type preservation

in function applications.

Proposition 4.1. Consider a type-complete set of assumptions A, and a program rule

R. Then R preserves types iff wtA(R).

The condition of type-completeness is imposed to avoid cases when type preservation in

a function application is potentially compromised but not actually broken with the data

constructors and functions currently in the program. However, if the program is extended

with new symbols, it would be possible to call the function breaking type preservation.

The following example shows this situation:

Example 4.1. Consider the program P ≡ {id X → X, f F → F true} with types

A ≡ {id : ∀α.α → α, f : ∀α.(α → α) → bool}. It is easy to check that, with the current

data constructor and functions symbols, the only pattern that can be passed as argument

of f making the application well-typed is id , which preserves types. However types are

not preserved for any pattern whose only type was τ → τ (for any τ). If we add to the

program the function {inc N → N + 1} with type int → int then the rule for f break

type preservation: A ` f inc : bool but A 6` inc true : bool .

Notice that according to the definition of well-typed rule (Definitions 3.1 or 3.2) the

rule for f is ill-typed in both situations, as the right-hand side restricts the type of F

more than its left-hand side—although in the first case there is not enough symbols to

cause the loss of type preservation.

We now turn to a syntactic approach to type safety similar to (Wright and Felleisen,

1992). Before that we need to define some properties about expressions:

Definition 4.3. An expression e is stuck wrt. a program P if it is a normal form but

not a pattern, and is faulty if it contains a junk subexpression.
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Faulty is a pure syntactic property that tries to overapproximate stuck. Not all faulty

expressions are stuck. For example, snd (z z) true is faulty but snd (z z) true � true.

However all faulty expressions are ill-typed:

Lemma 4.1 (Faulty expressions are ill-typed). If e is faulty then there is no A such

that wtA(e).

Proof. By contradiction, using the fact that junk expressions cannot have a valid type

wrt. any set of assumptions A. See page 34 in Appendix A for a complete proof.

The next theorem states that all finished reductions of well-typed ground expressions

do not get stuck but end up in patterns of the same type as the original expression.

Theorem 4.4 (Syntactic Soundness). If wtA(P), e is ground and A ` e : τ then: for

all e′ ∈ nfP(e), e′ is a pattern and A ` e′ : τ .

Proof. See page 35 in Appendix A for a complete proof.

The following complementary result states that the evaluation of well-typed expressions

does not pass through any faulty expression.

Theorem 4.5. If wtA(P), wtA(e) and e is ground, then there is no e′ such that P `
e�∗ e′ and e′ is faulty.

Proof. By contradiction. Suppose that wtA(P), A ` e : τ , e is ground and there exists

some e′ such that P ` e �∗ e′ and e′ is faulty. By Type Preservation (Theorem 4.2)

we know that A ` e′ : τ , but by Lemma 4.1 faulty expressions are ill-typed, reaching a

contradiction.

4.1. Discussion of the properties

We discuss now the strength of our results considering some interdependent factors: the

rules for failure in Section 3, the liberality of our well-typedness condition, and our notion

of faulty expression.

Progress and type preservation. In (Milner, 1978) Milner considered ‘a value ‘wrong’,

which corresponds to the detection of a failure at run-time’ to reach his famous lemma

‘well-typed programs don’t go wrong’. For this to be true in languages with pattern match-

ing, like Haskell or ours, not all run-time failures should be seen as wrong, as happens

with definitions like head (x:xs) → x, where there is no rule for (head [ ]). Otherwise,

progress does not hold and some well-typed expressions become stuck. A solution is con-

sidering a ‘well-typed completion’ of the program, adding a rule like head [ ] → error

where error is a value accepting any type. With it, (head [ ]) reduces to error and is

not wrong, but (head true), which is ill-typed, is wrong and its reduction gets stuck. In

our setting, completing definitions would be more complex because of HO-patterns that

could lead to an infinite number of ‘missing’ cases. To cope with this problem, our failure

rules in Section 3 are used to replace the ’well-typed completion’. We prefer the word

fail instead of error because, in contrast to FP systems where an attempt to evaluate

(head [ ]) results in a run-time error, in FLP systems rather than an error this is a silent
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failure in a possible space of non-deterministic computations managed by backtracking.

Admittedly, in our system the difference between ‘wrong’ and ‘fail’ is weaker from the

point of view of reduction. Certainly, junk expressions are stuck but, for instance, (head

[ ]) and (head true) both reduce to fail, instead of the ill-typed (head true) getting stuck.

Since fail accepts all types, this might seem a point where ill-typedness comes in hid-

denly and then magically disappear by the effect of reduction to fail. This cannot happen,

however, because type preservation holds step-by-step, and then no reduction e →∗ fail

starting with a well-typed e can pass through the ill-typed (head true) as intermediate

(sub)-expression.

Liberality. In our system the risk of accepting as well-typed some expressions that one

might prefer to reject at compile time is higher than in more restrictive type systems.

Consider the function size of Section 1, page 3. For any well-typed expression e, size e is

also well-typed, even if e’s type is not considered in the definition of size; for instance,

size (true,false) is a well-typed expression reducing to fail. This is consistent with the

liberality of our system, since the definition of size could perfectly have included a rule

for computing sizes of pairs. Hence, for our system, this is a pattern matching failure

similar to the case of (head [ ]). This can be appreciated as a weakness, and is further

discussed in Section 6 in connection to type classes and GADTs.

Syntactic soundness and faulty expressions. Theorems 4.4 and 4.5 are easy con-

sequences of progress and type preservation. Theorem 4.5 is indeed a weaker safety cri-

terion, because our faulty expressions only capture the presence of junk, which by no

means is the only source of ill-typedness. For instance, the expressions (head true) or

(eq true z) are ill-typed but not faulty. Theorem 4.5 says nothing about them; it is

type preservation who ensures that those expressions will not occur in any reduction

starting in a well-typed expression. Still, Theorem 4.5 contains no trivial information.

Although checking the presence of junk is trivial (counting arguments suffices for it),

the fact that a given expression will not become faulty during reduction is a typically

undecidable property approximated by our type system. For example, consider g with

type ∀α, β.(α → β) → α → β, defined as g H X → H X. The expression (g true false)

is not faulty but reduces to the faulty (true false). Our type system avoids that because

the non-faulty expression (g true false) is detected as ill-typed.

5. Examples

In this section we present some examples showing the flexibility achieved by our type

system. They are written in two parts: a set of assumptions A over constructors and func-

tions and a set of program rules P. We consider the following initial set of assumptions,

common to all examples:

Abasic ≡ {true, false : bool, z : nat, s : nat→ nat, (:) : ∀α.α→ [α]→ [α],

[ ] : ∀α.[α], pair : ∀α, β.α→ β → pair α β, key : ∀α.α→ (α→ nat)→ key,

∧,∨ : bool→ bool→ bool, snd : ∀α, β.α→ β → β, length : ∀α.[α]→ int}
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A ≡ Abasic ⊕ {eq : ∀α.α→ α→ bool }
P ≡ { eq true true → true,

eq true false → false,
eq false true → false,
eq false false → true,

eq z z → true,
eq z (s X)→ false,
eq (s X) z → false,
eq (s X) (s Y )→ eq X Y,

eq (pair X1 Y1) (pair X2 Y2)→
(eq X1 X2) ∧ (eq Y1 Y2) }

A ≡ Abasic ⊕ { eq : ∀α.repr α→ α→ α→ bool,
rbool : repr bool, rnat : repr nat,
rpair : ∀α, β.repr α→ repr β →

repr (pair α β) }

P ≡ { eq rbool true true → true,
eq rbool true false → false,
eq rbool false true → false,
eq rbool false false → true,

eq rnat z z → true,
eq rnat z (s X)→ false,
eq rnat (s X) z → false,
eq rnat (s X) (s Y )→ eq rnat X Y,

eq (rpair Ra Rb) (pair X1 Y1) (pair X2 Y2)→
(eq Ra X1 X2) ∧ (eq Rb Y1 Y2) }

a) Original program b) Equality using GADTs

Fig. 4. Type-indexed equality

5.1. Type-indexed functions

Type-indexed functions—in the sense appeared in (Hinze and Löh, 2007)—are functions

that have a particular definition for each type in a certain family. The function size

of Section 1—page 3—is an example of such a function. A similar example is given

in Figure 4-a, containing the code for an equality function which operates only with

booleans, natural numbers and pairs.

An interesting point is that we do not need a type representation as an extra argument

of this function as we would need in a system using GADTs (Cheney and Hinze, 2003;

Hinze and Löh, 2007). In these systems the pattern matching on the GADT induces

a type refinement, allowing the rule to have a more specific type than the type of the

function. In our case this flexibility resides in the notion of well-typed rule. Then a type

representation is not necessary because the arguments of each rule of eq already force the

type of the left-hand side and its variables to be more specific (or the same) than those

inferred for the right-hand side. The absence of type representations provides simplicity

to rules and programs, since extra arguments imply that all functions using eq direct or

indirectly must be extended to accept and pass these type representations. In contrast,

our rules for eq (extended to cover all constructed types) are the standard rules defining

strict equality that one can find in FLP papers—see e.g. (Hanus, 2007)—but that cannot

be written directly in existing systems like Toy or Curry, because they are ill-typed

according to Damas-Milner types.

We stress also the fact that the program of Figure 4-a would be rejected by systems

supporting GADTs (Cheney and Hinze, 2003; Schrijvers et al., 2009), while the encoding

of equality using GADTs as type representations in Figure 4-b is also accepted by our

type system.

Another interesting point is that we can handle equality in a quite fine way, much more

flexible than in Toy or Curry, where equality is a built-in that proceeds structurally as in

Figure 4-a. With our proposed type system programmers can define structural equality

as in Figure 4-a for some types, choose another behavior for others, and omitting the

rules for the cases they do not want to handle. Moreover, the type system protects
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against unsafe definitions, as we explain now: it is known (González-Moreno et al., 2001)

that in the presence of HO-patterns§ structural equality can lead to the problem of

opaque decomposition. For example, consider the expression eq (snd z) (snd true). It

is well-typed, but after a decomposition step using the structural equality we obtain

eq z true, which is ill-typed. Different solutions have been proposed (González-Moreno

et al., 2001), but all of them need fully type-annotated expressions at run time, which

penalizes efficiency. With our proposed type system that overloading at run time is not

necessary since this problem of opaque decomposition is handled statically at compile

time: we simply cannot write equality rules leading to opaque decomposition, because

they are rejected by the type system. This happens with the rule eq (snd X) (snd Y )→
eq X Y , which will produce the previous problematic step. It is rejected because the

inferred type for the right-hand side and its variables X and Y is (bool, γ, γ), which is

more specific than the inferred in the left-hand side (bool, α, β).

Finally, type-indexed functions in our type system have a very interesting application.

It is well known that type classes (Wadler and Blott, 1989; Hall et al., 1996) provide a

clean, modular and elegant way of writing overloaded functions in functional languages

as Haskell. Type classes are usually implemented by means of a source-to-source transfor-

mation that introduces extra parameters—called dictionaries—to overloaded functions

(Wadler and Blott, 1989; Hall et al., 1996). However, this classical translation produces

a problem of missing answers when applied to FLP due to a bad interaction between

non-determinism and the call-time choice semantics (Lux, 2009; Martin-Martin, 2011).

Using type-indexed functions and type witnesses—a representation of types as values—it

is possible to develop a type-passing translation for type classes similar to (Thatté, 1994)

that solves this problem and whose translated programs are well-typed in the proposed

liberal type system. Figure 5 shows the translation of a program with type classes using

the equality class and function. As can be seen, the eq function is translated into a type-

indexed function whose first argument is a type witness. These type witnesses—which are

new constructors generated for the data types in program, with types #bool:: bool and

#list:: A→ [A]—are used to determine which rules of the type-indexed function eq can

be used. Proper type witnesses are passed to overloaded functions, as in the case of the

member function. These witnesses are determined by a type analysis over the expressions

in source programs, just as it is done in the classical dictionary-based translation of type

classes.

Apart from solving the problem of missing answers, this type-passing translation also

produces faster and simpler programs than the classical translation. A complete discus-

sion of these points, the formalization of the translation and further examples can be

found in (Martin-Martin, 2011).

§ This situation also appears with first order patterns containing data constructors with existential

types.
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eqBool :: bool → bool → bool
eqBool true true = true

eqBool true false = false

eqBool false true = false

eqBool false false = true

class eq A where

eq :: A→ A→ bool

instance eq bool where

eq X Y = eqBool X Y

instance 〈eq A〉 ⇒ eq [A] where

eq [] [] = true

eq [] (Y:Ys) = false

eq (X:Xs) [] = false

eq (X:Xs) (Y:Ys) =

and (eq X Y) (eq Xs Ys)

member :: 〈eq A〉 ⇒ [A]→ A→ bool
member [] Y = false

member (X:Xs) Y =

or (eq X Y) (member Xs Y)

eqBool :: bool → bool → bool
eqBool true true = true

eqBool true false = false

eqBool false true = false

eqBool false false = true

eq :: A→ A→ A→ bool
eq #bool X Y = eqBool X Y

eq (#list WA) [] [] = true

eq (#list WA) [] (Y:Ys) = false

eq (#list WA) (X:Xs) [] = false

eq (#list WA) (X:Xs) (Y:Ys) = and

(eq WA X Y)

(eq (#list WA) Xs Ys)

member :: A→ [A]→ A→ bool
member WA [] Y = false

member WA (X:Xs) Y =

or (eq WA X Y) (member WA Xs Y)

a) Source program b) Translated program

Fig. 5. Translation of a program using equality

5.2. Existential types, opacity and HO-patterns

Existential types (Mitchell and Plotkin, 1988; Perry, 1991; Läufer and Odersky, 1994)

appear when type variables in the type of a constructor do not occur in the final type.

For example the constructor key : ∀α.α → (α → nat) → key has an existential type,

since α does not appear in the final type key, i.e., it has the equivalent type (∃α.α →
(α → nat)) → key. This type means that the first argument of key is an expression

of some unknown type α, and the second one is a function from that unknown type

to natural numbers (α → nat). Systems supporting existential types treat differently

constructors with existential type (in the sequel existential constructors) depending on

their place in the rule. If they appear in the right-hand side, they are treated as any other

polymorphic symbol, allowing any instance of their type. However, if they appear in the

left-hand side, new distinct constant types—called Skolem constants—are introduced for

each existentially quantified variable. For example in key X F the constructor key is

assigned the type κ → (κ → nat) → key—where κ is a fresh Skolem constant—so X

and F have types κ and κ → nat respectively. Therefore, any occurrence of these data

variables in the right-hand side that needs a more concrete type as (not X) or (F true)

will be considered ill-typed. This situation also happens in the left-hand side of the rule,

if key contains arguments of more concrete types as in (key z s).

The type system presented in this paper accepts classical functions dealing with exis-
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tential constructors, like getKey:

A ≡ Abasic ⊕ { getKey : key → nat } P ≡ { getKey (key X F )→ F X }

Notice that this rule is well-typed because the right-hand side does not force the types of

the variables X and F (α and α→ β resp.) more than the left-hand side does (α and α→
nat resp.). However, the type system presented here gives a more permissive treatment to

existential constructors than usual approaches (Mitchell and Plotkin, 1988; Perry, 1991;

Läufer and Odersky, 1994). As a consequence, rules containing existential constructors

with arguments of concrete types—as getKey (key z s)→ z or getKey (key (s X ) F )→
s (F X)—are allowed provided right-hand sides does not restrict the types of the variables

more than left-hand sides. Notice that our more permissive behavior comes directly from

the definition of well-typed rule and no specific treatment of existential constructors is

needed¶, in the same way that the size function from Section 1—page 3—has rules whose

argument have a more specific type (bool, nat and [α]) than the type for them that comes

from the declared type of the function (α).
Apart from existential constructors, in functional logic languages HO-patterns can

introduce a similar opacity than existential types. A prototypical example is snd X: we
know that X has some type, but we cannot know anything about it from the type β → β
of the expression. This opacity problem, originally identified in (González-Moreno et al.,
2001), is solved in (López-Fraguas et al., 2010) by means of opaque variables. Briefly
explained, a data variable is opaque in a pattern if the type of the whole pattern does
not univocally fix the type of the variable. That is the case of X in the pattern snd X:
from the type β → β of the pattern we cannot know univocally the type of X, which
indeed can have any type (bool , int , [bool ] . . . ). The problems that opaque variables
generate for type preservation are solved in (López-Fraguas et al., 2010) by forbidding
critical variables in program rules (data variables appearing in the righ-hand side which
are opaque in a pattern of the left-hand side). However, it is known that this solution
rejects functions that do not compromise type preservation although they contain critical
variables. The program below shows how the system presented here generalizes that from
(López-Fraguas et al., 2010), accepting functions containing critical variables:

A ≡ Abasic ⊕ { idSnd : ∀α, β.(α→ α)→ (β → β), f : ∀α.(α→ α)→ int }
P ≡ {idSnd (snd X)→ snd X, f (snd X)→ length [X], f (snd (X : Xs))→ length Xs}

Variables X and Xs are critical in all the rules, so they are rejected by the type system

in (López-Fraguas et al., 2010). However, the type system presented here accepts all the

rules because they verify the well-typedness criterion: right-hand sides do not restrict the

types of the variables more than left-hand sides.

Another remarkable example using HO patterns is given by the well-known translation

of higher-order programs to first-order programs (Warren, 1982) often used as a stage of

the compilation of functional logic programs—see e.g. (Antoy and Tolmach, 1999; López-

Fraguas et al., 2008). In short, this translation introduces a new function symbol @ (to be

read as ‘apply ’), and then adds calls to @ in some points in the program and appropriate

¶ In contrast to the explicit treatment of existentially quantified variables using Skolem constants.
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rules for evaluating it. This latter aspect is interesting here, since those @-rules are not

Damas-Milner typeable. The following program contains the @-rules (written in infix

notation) for a concrete example with the constructors z, s, [ ], (:) and the functions

length, append and snd with the usual types.

A ≡ Abasic ⊕ { length : ∀α.[α]→ nat,append : ∀α.[α]→ [α]→ [α],

add : nat→ nat→ nat,@ : ∀α, β.(α→ β)→ α→ β }

P ≡ { s @ X → s X, (:) @ X → (:) X, ((:) X) @ Y → (X : Y ),

append @ X → append X, (append X) @ Y → append X Y,

snd@X → snd X, (snd X) @Y → snd X Y, length@X → length X }

These rules use HO-patterns, which is a cause of rejection in many systems. Even if HO-

patterns were allowed, the rules for @ would be rejected by a Damas-Milner-like type

system. Because of all this, the @-introduction stage of the FLP compilation process can

be considered as a source to source transformation, instead of a hard-wired step.

5.3. Generic functions

According to a strict view of genericity, the functions size and eq in Section 1 and 5.1

resp. are not truly generic. We have a definition for each type, instead of one ‘canonical’

definition to be used by each concrete type. However we can achieve this by introducing

a ‘universal’ data type over which we define the function and then use it for concrete

types via a conversion function. We develop the idea for the size example.

This can be done by using GADTs to represent uniformly the applicative structure of

expressions—for instance, the spines of (Hinze and Löh, 2007)—then defining size over

that uniform representations, and finally applying it to concrete types via conversion

functions. Again, we can also offer a similar but simpler alternative. A uniform repre-

sentation of constructed data can be achieved with a data type data univ = c nat [univ]

where the first argument of c is used for numbering constructors, and the second one

is the list of arguments of a constructor application. A universal size can be defined as

usize (c Xs) → s (sum (map usize Xs)) using some functions of Haskell’s prelude. Now,

a generic size can be defined as size → usize · toU , where toU is a conversion function

with declared type toU : ∀α.α→ univ

toU true → c z [ ] toU false → c (s z) [ ]

toU z → c (s2 z) [ ] toU (s X) → c (s3 z) [toU X]

toU [ ] → c (s4 z) [ ] toU (X:Xs) → c (s5 z) [toU X,toU Xs]

(si abbreviates iterated s’s). This toU function uses the specific features of our system. It

is interesting also to remark that in our system the truly generic rule size→ usize · toU
can coexist with the type-indexed rules for size of Section 1. This might be useful in

practice: one can give specific, more efficient definitions for some concrete types, and a

generic default case via toU conversion for other types‖.

‖ For this to be really practical in FLP systems, where there is not a ‘first-fit’ policy for pattern matching
in case of overlapping rules, a specific syntactic construction for ‘default rule’ would be needed.
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Admittedly, the type univ has less representation power than the spines of (Hinze and

Löh, 2007), which could be a better option in more complex situations. Nevertheless,

notice that the GADT-based encoding of spines is also valid in our system.

6. Discussion

We further discuss here some positive and negative aspects of our type system.

Simplicity. Our well-typedness condition, which adds only one simple check for each

program rule to standard Damas-Milner inference, is much easier to integrate in existing

FLP systems than, for instance, type classes—see (Lux, 2008) for some known problems

for the latter—or GADTs, which have a specific type system more complex than Damas-

Milner.

Liberality (continued from Section 4). We recall the example of size, where our

system accepts the expression size e as well-typed, for any well-typed e. Type classes

impose more control: size e is only accepted if e has a type in the class Sizeable. There

is a burden here: you need a class for each generic function, or at least for each range of

types for which a generic function exists; therefore, the number of class instance declara-

tions for a given type can be very high. GADTs are in the middle way. At a first sight, it

seems that the types to which size can be applied are perfectly controlled because only

representable types are permitted. The problem, as with classes, comes when considering

other functions that are generic but for other ranges of types. Now, there are two options:

either you enlarge the family of representable types, facing up again the possibility of

applying size to unwanted arguments, or you introduce a new family of representation

types, which is a programming overhead, somehow against genericity.

Need of type declarations. In contrast to Damas-Milner system, where principal types

exist and can be inferred, our definition of well-typed program (Definition 3.1) assumes

an explicit type declaration for each function. This happens also with other well-known

type features, like polymorphic recursion, arbitrary-rank polymorphism or GADTs (Ch-

eney and Hinze, 2003; Schrijvers et al., 2009). Moreover, programmers usually declare

the types of functions as a way of documenting programs. Notice also that type inference

for functions would be a difficult task since functions, unlike expressions, do not have

principal types. Consider for instance the rule not true→ false. All the possible types for

the not function are ∀α.α → α, ∀α.α → bool and bool → bool but none of them is most

general.

Loss of parametricity. In (Wadler, 1989) one of the most remarkable applications of

type systems was developed. The main idea there is to derive “free theorems” about

the equivalence of functional expressions by just using the types of some of its con-

stituent functions. These equivalences express different distribution properties, based on

Reynold’s abstraction theorem there recast as “the parametricity theorem”, which ba-

sically exploits the fact that the polymorphic type variables in the types of function

symbols cannot be instantiated in the left-hand side of program rules. Parametricity

was originally developed for the polymorphic λ-calculus, which in particular enjoys the

strong normalisation property, so its application to actual languages with practical fea-

tures like unbounded recursion or partial functions has to be done with care. This can
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be easily understood by considering the first example in (Wadler, 1989), stating that

for any function f : ∀α.[α] → [α] and any function g with some (irrelevant) type then

(map g)◦f ≡ f ◦(map g). The intuition is that, as by parametricity f cannot inspect the

polymorphic elements of its input list—to do so it should instantiate the type variable α

into a more concrete type in the left-hand side of some program rule for f—then it may

only return a rearrangement of that list, maybe dropping or duplicating some of its ele-

ments but never introducing new elements. This is not the case for a practical language

like Haskell, for example, as we can define the functions {loop → loop, fail → head [ ]},
both with type ∀α.α, that can be used to introduce new elements in the resulting list for

f thus breaking that free theorem (Seidel and Voigtländer, 2010). Similarly an impure

feature like Haskell’s seq operator weakens parametricity because it essentially inspects

its polymorphic first argument in order to force its evaluation (Hudak et al., 2007).

Nevertheless free theorems can be weakened with several additional conditions so they

actually hold for Haskell (Wadler, 1989; Johann and Voigtländer, 2004). These efforts

are motivated by the fact that parametricity is used to justify the soundness of some im-

portant compiler optimizations, like the “short-cut deforestation” of GHC (GHC-Team,

2011)—although it is admitted that seq still makes this particular transformation un-

sound (Hudak et al., 2007).

Regarding FLP, it is known that non-determinism not only breaks free theorems but also

equational rules for concrete functions that hold for Haskell, like (filter p) ◦ (map h) ≡
(map h) ◦ (filter (p ◦h)) (Christiansen et al., 2010). The situation gets even worse when

considering extra variables and narrowing—not treated in the present work but standard

in FLP systems—because then the function f above could also introduce a free variable

in its resulting list, thus breaking the equivalence from a new side wrt. Haskell, as in

FLP free variables may produce interesting values in contrast to loop and fail.

With our type system, not only those free theorems derived from parametricity are

broken, but it is the more fundamental notion of parametricity they rely on that is lost,

because functions are allowed to inspect any argument subexpression, as seen in the size

function from page 3. This has a limited impact in the FLP setting, as free theorems

were already heavily compromised by non-determinism and free variables, but it could

limit the applicability of our type system to pure FP. For example, working without the

hypothesis of parametricity would be a problem for GHC because of its representation of

datatypes, which results in an unpredictable behaviour when matching two expressions

with different types—as can be seen by using the polymorphic casting function from (Hu-

dak et al., 2007). Fortunately, state-of-the-art FLP systems are based on a compilation

to Prolog for which those heterogeneous matchings pose no problem. In fact ours would

not be the first type system for FP that allows that kind of liberalized inspections, i.e. it

is possible to do that by using GADTs, as seen in Figure 4-b. Nevertheless GADTs—at

least those implemented by GHC—are only able to inspect “liberalized” arguments whose

type has been already sufficiently refined in the left-to-right Haskell matching process.

For example if we interchange the first and third argument of eq in Figure 4-b then the

program would be rejected by GHC—while it is still accepted by our type system. The

reason is that GHC’s matching process proceeds from left to right and, as GADT argu-

ments fix their polymorphic types when matched thus fixing the types of the arguments
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they liberalize, that ensures the absence of dangerous matchings in GHC. Similarly, clas-

sical existential types use skolem constants to forbid liberalized inspections that would

threaten parametricity and turn GHC style matching and datatypes representation into

an unsound procedure. However, that liberalized inspections just result from the kind

of matchings exploited by our liberal functions, therefore the possible application of our

type system to concrete Haskell implementations remains an open problem. Maybe a

modification of our proposed type system, that would restrict liberal typing of functions

to some fragments of the program only, would still enjoy some relevant parametricity

property. We consider this an interesting subject of future work.

7. Conclusions

Starting from a simple type system, essentially Damas-Milners’s one, we have proposed

a new notion of well-typed functional logic program that exhibits interesting properties:

simplicity; enough expressivity to achieve a variety of existential types or GADT-like en-

codings, and to open new possibilities to genericity; good formal properties (type sound-

ness, protection against unsafe use of HO-patterns, maximal liberality while fulfilling the

previous conditions). Regarding the practical interest of our work, we stress the fact that

no existing FLP system supports any of the examples in Section 5, in particular the

examples of the equality—where known problems of opaque decomposition (González-

Moreno et al., 2001) can be addressed—and apply functions, which play important roles

in the FLP setting. Moreover, our work provides a valuable alternative to our previous

results (González-Moreno et al., 2001; López-Fraguas et al., 2010) about safe uses of

HO-patterns. However, considering also the weaknesses discussed in Section 6 suggests

that a good option in practice could be a partial adoption of our system, not attempting

to replace standard type inference, type classes or GADTs, but rather complementing

them.

We find suggestive to think of the following future scenario for our system Toy: a typical

program will use standard type inference except for some concrete definitions where it

is annotated that our new liberal system is adopted instead. In addition, adding type

classes to the languages is highly desirable; then programmers can choose the feature—

ordinary types, classes, GADTs or our more direct generic functions—that best fits their

needs of genericity and/or control in each specific situation.

Some steps to achieve this scenario have been already performed. The first one is

a web interface (http://gpd.sip.ucm.es/LiberalTyping) of the type system which

checks program well-typedness. This web interface supports GADT syntax for data dec-

larations, so all the examples in this paper can be checked. Another performed step is

the development of a branch of Toy using the type system proposed in this paper, which

can be downloaded at http://gpd.sip.ucm.es/Toy2Liberal. This branch lacks syntax

for GADT data declaration, however it provides the users a complete and functional Toy

system where programs can be compiled and evaluated.

Apart from further implementation work, we consider several lines of future work:

— A precise specification of how to mix different typing conditions in the same program

and how to translate type classes into our generic functions. A first step towards the

http://gpd.sip.ucm.es/LiberalTyping
http://gpd.sip.ucm.es/Toy2Liberal
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specification of the translation of type classes has been already developed in (Martin-

Martin, 2011).

— Despite of the lack of principal types, some work on type inference can be done, in

the spirit of (Schrijvers et al., 2009).

— Combining our genericity with the existence of modules could require adopting open

types and functions (Löh and Hinze, 2006).

— Narrowing, which poses specific problems to types, should be also considered.
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Functional Logic Programs. In 8th Asian Symposium on Programming Languages and Systems

(APLAS ’10), pages 80–96. Springer LNCS 6461.
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Appendix A. Proofs and auxiliary results

This appendix contains complete proofs for all the results in the paper. We first present

some notions used in the proofs:

a) For any type substitution π its domain is defined as dom(π) = {α | απ 6= α}; and

the variable range of π is vran(π) =
⋃
α∈dom(π) ftv(απ)

b) Provided the domains of two type substitutions π1 and π2 are disjoint, the simulta-

neous composition (π1 + π2) is defined as:

α(π1 + π2) =

{
απ1 if α ∈ dom(π1)

απ2 otherwise

c) If A is a set of type variables, the restriction of a substitution π to A (π|A) is

defined as:

α(π|A) =

{
απ if α ∈ A
α otherwise

We use π|rA as an abbreviation of π|T VrA

A.1. Auxiliary results

Theorem A.1 shows that the type and substitution found by the inference are correct,

i.e., we can build a type derivation for the same type if we apply the substitution to the

assumptions.

Theorem A.1 (Soundness of �). A � e : τ |π =⇒ Aπ ` e : τ
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Theorem A.2 expresses the completeness of the inference process. If we can derive a

type for an expression applying a substitution to the assumptions, then inference will

succeed and will find a type and a substitution which are more general.

Theorem A.2 (Completeness of � wrt. `). If Aπ′ ` e : τ ′ then ∃τ, π, π′′. A � e :

τ |π ∧ Aππ′′ = Aπ′ ∧ τπ′′ = τ ′.

The following theorem shows some useful properties of the typing relation `, used in

the proofs.

Theorem A.3 (Properties of the typing relation).

a) If A ` e : τ then Aπ ` e : τπ, for any π

b) Let s be a symbol not appearing in e. Then A ` e : τ ⇐⇒ A⊕{s : σ} ` e : τ , for any

σ.

c) If A⊕ {X : τx} ` e : τ and A⊕ {X : τx} ` e′ : τx then A⊕ {X : τx} ` e[X/e′] : τ .

Proof. The proof of Theorems A.1, A.2 and A.3 appears in Enrique Martin-Martin’s

master thesis (Martin-Martin, 2009).

Remark A.1. If A⊕{Xn : τn} ` e : τ and A⊕{Xn : αn} � e : τ ′|π with {αn}∩ftv(A) =

∅ then we can assume that Aπ = A.

Explanation. If it is possible to derive a type for e with the assumptions A, then the

inference will not need to instantiate A. Since (A ⊕ {Xn : αn})[αn/τn] ` e : τ then

by Theorem A.2 we know that A ⊕ {Xn : αn} � e : τ ′|π and (A ⊕ {Xn : αn})ππ′′ =

(A⊕{Xn : αn})[αn/τn] for some substitution π′′. Therefore Aππ′′ = A[αn/τn] = A, so π

only replace variables in A which are restored by π′′. These replacements are generated by

unification steps that substitute free type variables in A for fresh type variables created

during inference. Then we can assume that in these cases unification only replaces fresh

variables, obtaining that Aπ = A.

A.2. Proof of Theorem 3.1

Theorem 3.1

If wtoldA (P) then wtA(P).

Proof. In (López-Fraguas et al., 2010) and also in this paper the definition of well-typed

program proceeds rule by rule, so we only have to prove that if wtoldA (f t1 . . . tn → e) then

wtA(f t1 . . . tn → e). For the sake of conciseness we will consider functions with just one

argument: f t→ e. Since patterns are linear (all the variables are different) the proof for

functions with more arguments follows the same ideas.

From wtoldA (f t→ e) we know that A `• λt.e : τ ′t → τ ′e, being τ ′t → τ ′e a variant of

A(f). Then we have a type derivation of the form:

[Λ]

A⊕ {Xn : τn} ` t : τ ′t
A⊕ {Xn : τn} ` e : τ ′e
A ` λt.e : τ ′t → τ ′e
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and critVarA(λt.e) = ∅, i.e., opaqueVarA(t) ∩ fv(e) = ∅. We want to prove that:

a) A⊕ {Xn : αn} � f t : τL|πL
b) A⊕ {Xn : βn} � e : τR|πR
c) ∃π.(τR, βnπR)π = (τL, αnπL)

d) AπL = A, AπR = A, Aπ = A

By the type derivation of t and Theorem A.2 we obtain the type inference

A⊕ {Xn : αn} � t : τt|πt

and there exists a type substitution π′′t such that τtπ
′′
t = τ ′t and (A⊕ {Xn : αn})πtπ′′t =

A⊕ {Xn : τn}, i.e., Aπtπ′′t = A and αiπtπ
′′
t = τi. Moreover, from critVarA(λt.e) = ∅ we

know that for every data variable Xi ∈ fv(e) then ftv(αiπt) ⊆ ftv(τt). Then we can build

the type inference for the application f t:

[iΛ]

A⊕ {Xn : αn} � f : τ ′t → τ ′e|id
(A⊕ {Xn : αn})id � t : τt|πt

a) A⊕ {Xn : αn} � f t : γπg|πtπg

By Remark A.1 we are sure that Aπt = A. Since τ ′t → τ ′e is a variant of A(f) we know

that it contains only free type variables in A or fresh variables, so (τ ′t → τ ′e)πt = τ ′t → τ ′e.

In order to complete the type inference we need to create a unifier πu for (τ ′t → τ ′e)πt and

τt → γ, being γ a fresh type variable. Notice that we had Aπtπ′′t = A and by Remark

A.1 Aπt = A, so Aπ′′t = A. Since τ ′t → τ ′e is a variant of A(f) it contains only type

variables which are free in A or fresh type variables, so π′′t will not affect it. Defining πu
as π′′t |ftv(τt) + [γ/τ ′e] we have an unifier, since:

(τ ′t → τ ′e)πtπu πt does not affect τ ′t → τ ′e
= (τ ′t → τ ′e)πu γ /∈ ftv(τ ′t → τ ′e)

= (τ ′t → τ ′e)π
′′
t |ftv(τt) π′′t |ftv(τt) does not affect τ ′t → τ ′e

= τ ′t → τ ′e definition of πu
= τ ′t → γπu Theorem A.2: τtπ

′′
t = τ ′t

= τtπ
′′
t |ftv(τt) → γπu γ /∈ ftv(τt)

= τtπu → γπu application of substitution

= (τt → γ)πu

Moreover, it is clear that πu is a most general unifier of (τ ′t → τ ′e)πt and τt → γ, so

πg ≡ π′′t |ftv(τt) + [γ/τ ′e].

By Theorem A.2 and the type derivation for e we obtain the type inference:

b)A⊕ {Xn : βn} � e : τe|πe

and there exists a type substitution π′′e such that τeπ
′′
e = τ ′e and (A⊕ {Xn : βn})πeπ′′e =

A ⊕ {Xn : τn}, i.e., Aπeπ′′e = A and βiπeπ
′′
e = τi. By Remark A.1 we also know that

Aπe = A, so Aπ′′e = A.

To prove c) we need to find a type substitution π such that (τe, βnπe)π = (γπg, αnπtπg).

Let I be the set containing the indexes of the data variables in t which appear in fv(e) and
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N its complement. We can define the substitution π as the simultaneous composition:

π ≡ π′′e |r{βi|i∈N} + [βi/αiπtπg]|{βi|i∈N}

This substitution is well defined because the domains of the two substitutions are disjoint.

The first component is the substitution π′′e restricted to the variables which appear in its

domain but not in {βi|i ∈ N}, while the domain of the second component contains only

the variables {βi|i ∈ N}. Notice that the data variables in {Xi|i ∈ N} do not occur in

fv(e) so they are not involved in the type inference for e. Therefore the type variables in

{βi|i ∈ N} do not appear in ftv(τe), dom(πe) or vran(πe). With this substitution π the

equality (τe, βnπe)π = (γπg, αnπtπg) holds because:

— Since τeπ
′′
e = τ ′e and the type variables in {βi|i ∈ N} do not occur in ftv(τe) we know

that τeπ = τeπ
′′
e |r{βi|i∈N} = τeπ

′′
e = τ ′e = γπg.

— We know that the variables in {Xi|i ∈ I} cannot be opaque in t, so ftv(αiπt) ⊆ ftv(τt)

for every i ∈ I and αiπtπg = αiπtπ
′′
t |ftv(τt) = τi for those variables. Since the type

variables {βi|i ∈ N} do not occur in vran(πe) then βiπeπ = βiπeπ
′′
e |r{βi|i∈N} =

βiπeπ
′′
e = τi = αiπtπg for every i ∈ I.

— Since the type variables {βi|i ∈ N} do not occur in dom(πe) then βiπeπ = βiπ =

αiπtπg for every i ∈ N .

Finally, we have to prove that d) Aπtπg = A, Aπe = A and Aπ = A. For the first case

we already know that Aπt = A and Aπ′′t = A. Since πg is defined as π′′t |ftv(τt)+[γ/τ ′e] and

γ is a fresh type variable not appearing in ftv(A) then Aπtπg = Aπg = Aπ′′t |ftv(τt) = A.

For the second case, Aπe = A holds using Remark A.1. For the last case we know that

Aπ′′e = A. Since π is defined as π′′e |r{βi|i∈N} + {βi/αiπtπg|i ∈ N} and no type variable

βi appears in ftv(A) (they are fresh type variables) then Aπ = Aπ′′e = A.

A.3. Proof of Theorem 4.1: Progress

Theorem 4.1 (Progress)

If wtA(P), wtA(e) and e is ground, then either e is a pattern or ∃e′. P ` e� e′.

Proof. By induction over the structure of e

Base case

X)This cannot happen because e is ground.

c ∈ CSn)Then c is a pattern, regardless of its arity n. This case covers e ≡ fail .

f ∈ FSn)Depending on n there are two cases:

— n > 0) Then f is a partially applied function symbols, so it is a pattern.

— n = 0) If there is a rule (f → e) ∈ P then we can apply rule (Fapp), so P ` s� e.

Otherwise there is not any rule (l → e′) ∈ P such that l and f unify, so we can

apply the rule for the matching failure (Ffail) obtaining P ` f � fail .

Inductive Step
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e1 e2)From the premises we know that there is a type derivation:

[APP]

A ` e1 : τ1 → τ
A ` e2 : τ1
A ` e1 e2 : τ

Both e1 and e2 are well-typed and ground. If e1 is not a pattern, by the Induction

Hypothesis we have P ` e1 � e′1 and using the (Contx) rule we obtain P ` e1 e2 � e′1 e2.

If e2 is not a pattern we can apply the same reasoning. Therefore we only have to treat

the case when both e1 and e2 are patterns. We make a distinction over the structure of

the pattern e1:

— X) This cannot happen because e1 is ground.

— c t1 . . . tn with c ∈ CSm and n ≤ m) Depending on m and n we distinguish two cases:

– n < m) Then e1 e2 is c t1 . . . tn e2 with n+ 1 ≤ m, which is a pattern.

– n = m)

• If c = fail then m = n = 0, so we have the expression fail e2. In this case we

can apply rule (FailP), so P ` fail e2 � fail .

• Otherwise e1 e2 is c t1 . . . tn e2 with n + 1 > m, which is junk. This cannot

happen because A ` e1 e2 : τ , and Lemma A.2 states that junk expressions

cannot be well-typed wrt. any set of assumptions.

— f t1 . . . tn with c ∈ FSm and n < m) Depending on m and n we distinguish two cases:

– n+1 < m) Then e1 e2 is f t1 . . . tn e2 which is a partially applied function symbol,

i.e., a pattern.

– n + 1 = m) Then e1 e2 is f t1 . . . tn e2. If there is a rule (l → r) ∈ P such that

lθ = f t1 . . . tn e2 then we can apply rule (Fapp), so P ` e1 e2 � rθ. If such

a rule does not exist, then there is not any rule (l′ → r′) ∈ P such that l′ and

f t1 . . . tn e2 unify. Therefore we can apply the rule for the matching failure (Ffail)

obtaining P ` e1 e2 � fail .

let X = e1 in e2)From the premises we know that there is a type derivation:

[LET]

A ` e1 : τX
A⊕ {X : Gen(τX ,A)} ` e2 : τ

A ` let X = e1 in e2 : τ

There are two cases depending on whether e1 is a pattern or not:

— e1 is a pattern) Then we can use the (Bind) rule, obtaining P ` let X = e1 in e2 �
e2[X/e1].

— e1 is not a pattern) Since let X = e1 in e2 is ground we know that e1 is ground

(notice that this does not force e2 to be ground). Moreover, A ` e1 : τt, so by

the Induction Hypothesis we can rewrite e1 to some e′1: P ` e1 � e′1. Using the

(Contx) rule we can transform this local step into a step in the whole expression:

P ` let X = e1 in e2 � let X = e′1 in e2.
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A.4. Proof of Theorem 4.2: Type Preservation

Theorem 4.2 (Type Preservation)

If wtA(P), A ` e : τ and P ` e� e′, then A ` e′ : τ .

Proof. We proceed by case distinction over the rule of the let-rewriting relation �
(Figure 2) used to reduce e to e′.

(Fapp) If we reduce an expression e using the (Fapp) rule is because e has the form

f t1θ . . . tmθ (being f t1 . . . tm → r a rule in P) and e′ is rθ. In this case we want to

prove that A ` rθ : τ . Since wtA(P) then wtA(f t1 . . . tm → r), and by the definition of

well-typed rule (Definition 3.2) we have:

(A) A⊕ {Xn : αn} � f t1 . . . tm : τL|πL

(B) A⊕ {Xn : βn} � r : τR|πR

(C) ∃π. (τR, βnπR)π = (τL, αnπL)

(D) AπL = A, AπR = A and Aπ = A.

By the premises we have the derivation

(E)A ` f t1θ . . . tmθ : τ

where θ = [Xn/t′n]. Since the type derivation (E) exists, then there exists also a type

derivation for each pattern t′i: (F) A ` t′i : τi. Notice that these τn are unique as the

left-hand side of the rule is linear, so each t′i will appear once.

If we replace every pattern t′i in the type derivation (E) by their associated variable Xi

and we add the assumptions {Xn : τn} to A, we obtain the type derivation:

(G)A⊕ {Xn : τn} ` f t1 . . . tm : τ

By (A) and (G) and Theorem A.2 we have (H) ∃π1. (A⊕{Xn : αn})πLπ1 = A⊕{Xn : τn}
and τLπ1 = τ . Therefore AπLπ1 = A and αiπLπ1 = τi for each i.

By (B) and the soundness of the inference (Theorem A.1):

(I)AπR ⊕ {Xn : βnπR} ` r : τR

Using the fact that type derivations are closed under substitutions (Theorem A.3-a) we

can add the substitution π of (C) to (I), obtaining:

(J)AπRπ ⊕ {Xn : βnπRπ} ` r : τRπ

By (J) y (C) we have that (K) AπRπ ⊕ {Xn : αnπL} ` r : τL

Using the closure under substitutions of type derivations (Theorem A.3-a) we can add

the substitution π1 of (H) to (K):

(L)AπRππ1 ⊕ {Xn : αnπLπ1} ` r : τLπ1

By (L) and (H) we have (M) AπRππ1 ⊕ {Xn : τn} ` r : τ

By AπL = A (D) and AπLπ1 = A (H) we know that (N) Aπ1 = A.
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From (D) and (N) follows (O) AπRππ1 = Aππ1 = Aπ1 = A.

By (O) and (M) we have (P) A⊕ {Xn : τn} ` r : τ

Using Theorem A.3-b) we can add the type assumptions {Xn : τn} to the type derivations

in (F), obtaining (Q) A ⊕ {Xn : τn} ` t′i : τi. Notice that we assume that Xn do not

appear in t′i ≡ Xiθ, as Xn are the variables of the rule.

By Theorem A.3-c) we can replace the data variables Xn in (P) by expressions of the

same type. We use the patterns t′n in (Q):

(R)A⊕ {Xn : τn} ` rθ : τ

Finally, the data variables Xn do not appear in rθ, so by Theorem A.3-b) we can erase

that assumptions in (R):

(S)A ` rθ : τ

(Ffail) and (FailP) Straightforward since in both cases e′ is fail . A type derivation

A ` fail : τ is possible for any τ since A contains the assumption fail : ∀α.α.

The rest of the cases are the same as the proof in Enrique Martin-Martin’s master

thesis (Martin-Martin, 2009).

A.5. Proof of Theorem 4.3: Maximal liberality of well-typedness conditions

In order to prove Theorem 4.3 we will use an auxiliary result relating the types involved

in type derivations to the types inferred by a type inference:

Lemma A.1. Given a closed set of assumptions A, if A ⊕ {Xn : αn} � e : τg|πg and

A ⊕ {Xn : τn} ` e : τ (for some αn fresh) then there exists some π such that τgπ = τ

and αiπgπ = τi for every i ∈ [1..n].

Proof. Straightforward by Theorem A.2 with π′ ≡ [αn/τn].

Theorem 4.3 (Maximal liberality of well-typedness conditions)

Let A be a closed set of assumptions, and assume that P is a program which is not well-

typed wrt. A, but such that every rule R ∈ P verifies the condition i) of well-typedness

in Definition 3.2. Then there exists a rule (f t1 . . . tm → e) ∈ P with variables Xn and

there exist types τn, τ such that A ⊕ {Xn : τn} ` f t1 . . . tm : τ and f t1 . . . tm � e but

A⊕ {Xn : τn} 6` e : τ .

Proof. For every rule, i) holds by hypothesis and iv) holds trivially as A is closed.

Therefore either condition ii) or iii) must fail for some rule R ≡ (f t1 . . . tm → e) ∈ P.

The condition i) says that A ⊕ {Xn : αn} � f t1 . . . tm : τL|πL, for some τL, πL. Then,

by the soundness of � (Theorem A.1) we have

(1) A⊕ {Xn : αnπL} ` f t1 . . . tm : τL
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Moreover, using (Fapp) and the rule R it is possible to perform the rewrite step

(2) f t1 . . . tm �(Fapp) e

We will now see that A ⊕ {Xn : αnπL} 6` e : τL, which will finish the proof by taking

τn = αnπL and τ = τL. We distinguish two cases depending on which of the conditions

ii) or iii) in Definition 3.2 fails for the rule R.

a) If ii) does not hold for R then by the completeness of � (Theorem A.2) there are not

any types τn, τ such that A⊕ {Xn : τn} ` e : τ , so in particular A⊕ {Xn : αnπL} 6`
e : τL as desired.

b) If ii) holds but iii) does not, then we have that there exist some τR, πR such that

(3) A⊕ {Xn : βn} � e : τR|πR by ii)

(4) ¬∃π.(τL, αnπL) = (τR, βnπR)π by failure of iii)

Condition (4) is equivalent to say that

(5) ∀π.(τL = τRπ =⇒ ∃i ∈ [1..n].αiπL 6= βiπRπ)

We reason now by contradiction, assuming that A⊕ {Xn : αnπL} ` e : τL (we want

to prove the contrary). Then by (3) and Lemma A.1 we have that there is some π

such that τRπ = τL and βiπRπ = αiπL for every i ∈ [1..n], which contradicts (5).

The previous proof is constructive since it shows that given a rule (f t1 . . . tm → e) ∈ P
not holding ii) or iii), the evaluation step f t1 . . . tm �(Fapp) e never preserves types

using τn = αnπL and τ = τL.

The following examples illustrates the lost of type preservation in the different cases

considered in the proof. The rule f1 → not [ ] with assumption f1 : bool does not

verify point ii) since the right-hand side is ill-typed. In this case it is easy to check that

A ` f1 : bool and f1 � not [ ], but A 6` not [ ] : bool—indeed, not [ ] does not have

any type. The rule f2 → true with assumption f2 : nat verifies point ii) but not iii)

because bool does not match nat, which corresponds to the case when (5) holds because

the antecedent in the implication always fails. Trivially A ` f2 : nat and f2 � true,

but A 6` true : nat . Finally, the rule f3 X → not X with assumption f3 : ∀α.α → bool

illustrates the case when point ii) holds but iii) does not, although in this case the

antecedent τL = τRπ of (5) holds for some π (for any π indeed, since τL = τR = bool).

What happens here is that the type bool inferred for the variable X in the right-hand

side does not match the type α inferred in the left-hand side. In this case it is clear that

A⊕ {X : α} ` f3 X : bool and f3 X � not X, but A⊕ {X : α} 6` not X : bool .

A.6. Proof of Proposition 4.1

Proposition 4.1

Consider a type-complete set of assumptions A, and a program rule R ≡ f t1 . . . tm → e.

Then R preserves types iff wtA(R).
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Proof.

=⇒) We proceed proving the contrapositive

¬wtA(f t1 . . . tm → e) =⇒ f t1 . . . tm → e is not type-preserving

If f t1 . . . tm → e is not well-typed because it does not verify point i) of Definition

3.2 then by completeness of type inference (Theorem A.2) the left-hand side of the

rule does not admit any type, so the rule is not type-preserving.

If f t1 . . . tm → e is not well-typed but it verifies the point point i) of Definition 3.2

then by soundness of type inference (Theorem A.1) its left-hand side admits some—

point i) of Definition 4.1 of type-preserving rule. In this case we have to prove that

¬wtA(f t1 . . . tm → e) =⇒ ∃θ.(A ` f t1θ . . . tmθ : τ ∧ A 6` eθ : τ)

As the the point i) of the definition of well-typed rule is verified, by Theorem 4.3

(maximal liberality of well-typedness conditions) we know that there are types τn
and τ such that A ⊕ {Xn : τn} ` f t1 . . . tm : τ and A ⊕ {Xn : τn} 6` e : τ . The set

of assumptions A is type-complete, so there are patterns tτn which can only have

those types, i.e., A ` tτi : τi. As the variables Xn are the variables of the rule we can

assume that they do not appear in the patterns tτn , so by Theorem A.3-b) we have

that A⊕{Xn : τn} ` tτi : τi. Using Theorem A.3-c) we can replace the variables Xn in

A⊕{Xn : τn} ` f t1 . . . tm : τ by the patterns of the same type with the substitution

θ ≡ [Xn/tτn ], obtaining A⊕ {Xn : τn} ` f t1θ . . . tmθ : τ . Again by Theorem A.3-b)

we can remove the variables Xn from the set of assumptions as they do not ocur in

f t1θ . . . tmθ, obtaining A ` f t1θ . . . tmθ : τ . On the other hand, it is easy to check

that A 6` eθ : τ because A ⊕ {Xn : τn} 6` e : τ and we replace the variables Xn by

patterns tτn which can only have those types τn.

⇐=) If wtA(f t1 . . . tm → e) then from point i) of Definition 3.2 (well-typed rule)

and Theorem A.1 (soundness of type inference), the left-hand side of the rule admits

some type—point i) of Definition 4.1 (type-preserving rule). Regarding the point

ii) of Definition 4.1, consider an arbitrary θ and τ such that A ` f t1θ . . . tmθ : τ .

Following the same reasoning as in the proof for the (Fapp) rule in Theorem 4.2 (type

preservation) we conclude that A ` eθ : τ .

A.7. Proof of Lemma 4.1: Faulty Expressions are ill-typed

In order to prove Lemma 4.1 we use an auxiliary result stating that junk expressions

cannot have a valid type wrt. any set of assumptions A:

Lemma A.2. If e is a junk expression then there is no A such that wtA(e).

Proof. By contradiction. Assume there is A such that wtA(e). If e is junk then it has

the form c t1 . . . tn with c ∈ CSm and n > m, i.e., (c t1 . . . tm) tm+1 . . . tn. The type
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derivation for e must contain a subderivation of the form:

[APP]

A ` (c t1 . . . tm) : τ1 → τ
A ` tm+1 : τ1

A ` (c t1 . . . tm) tm+1 : τ

Any possible type derived for the symbol c has the form τ ′1 → . . .→ τ ′m → (C τ ′′1 . . . τ
′′
k ).

Then after m applications of the [APP] rule the type derived for c t1 . . . tm is C τ ′′1 . . . τ
′′
k .

This is not a functional type (τ1 → τ), so we have found a contradiction.

Using the previous result, we can prove Lemma 4.1:

Lemma 4.1 (Faulty Expressions are ill-typed)

If e is faulty then there is no A such that wtA(e).

Proof. We prove it by contradiction. Suppose that e has a junk subexpression e′ and

A ` e : τ . Therefore, in that derivation we have a subderivation A′ ` e′ : τ ′ (for some A′
and τ ′). By Lemma A.2 those A′ and τ ′ cannot exist, so we have found a contradiction.

A.8. Proof of Theorem 4.4: Syntactic Soundness

We need some auxiliary results:

Lemma A.3 (Well-typed normal forms are patterns). If wtA(P), wtA(e), e is

ground and e is a normal form then e is a pattern.

Proof. Straightforward from progress (Theorem 4.1).

Lemma A.4. If P ` e � e′ and P does not contains extra variables in its rules, then

fv(e′) ⊆ fv(e).

Proof. Easily by case distinction over the rule applied in the step P ` e� e′.

From the previous lemma follows an useful corollary:

Corollary A.1. If e is ground, P ` e�∗ e′ and P does not contains extra variables in

its rules, then e′ is ground.

Using the previous results, the proof of Theorem 4.4 is straightforward:

Theorem 4.4 (Syntactic Soundness) If wtA(P), e is ground and A ` e : τ then:

for all e′ ∈ nfP(e), e′ is a pattern and A ` e′ : τ .

Proof. Let e′ be an arbitrary expression in nfP(e). Since e is ground, by Corollary A.1

e′ is also ground. Applying Type Preservation (Theorem 4.2) in all the reduction steps

we have A ` e′ : τ . Since e′ is a well-typed normal form, by Lemma A.3 e′ is a pattern.
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