Skip to main content

Effectively Leveraging Entropy and Relevance for Summarization

  • Conference paper
Information Retrieval Technology (AIRS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6458))

Included in the following conference series:

  • 1417 Accesses

Abstract

Document summarization has attracted a lot of research interest since the 1960s. However, it still remains a challenging task on how to extract effective feature for automatic summarization. In this paper, we extract two features called entropy and relevance to leverage information from different perspectives for summarization. Experiments on unsupervised and supervised methods testify the effectiveness of leveraging the two features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, J.-H., Park, S., Ahn, C.-M., Kim, D.: Automatic generic document summarization based on non-negative matrix factorization. Information Processing and Management 45, 20–34 (2009)

    Article  Google Scholar 

  2. Shen, D., Sun, J.-T., Li, H., Yang, Q., Chen, Z.: Document summarization using conditional random fields. In: International Joint Conference On Artificial Intelligence, pp. 2862–2867 (2007)

    Google Scholar 

  3. Conroy, J.M., O’Leary, D.P.: Text summarization via hidden markov models. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 406–407. ACM Press, New York (2001)

    Google Scholar 

  4. Aliguliyev, R.M.: A new sentence similarity measure and sentence based extractive technique for automatic text summarization. IExpert Systems with Applications 36, 7764–7772 (2009)

    Article  Google Scholar 

  5. Jones, K.S.: Automatic summarizing: The state of the art. Information processing and Management 43, 1449–1481 (2007)

    Article  Google Scholar 

  6. Shen, D., Yang, Q., Chen, Z.: Noise reduction through summariation for web-page classification. Information Processing and Management 42, 1735–1747 (2007)

    Article  Google Scholar 

  7. Li, L., Zhou, K., Xue, G.-R., Zha, H., Yu, Y.: Enhancing diversity, coverage and balance for summarization through structure learning. In: WWW 2009: Proceedings of the 18th international conference on World wide web, vol. 4825, pp. 71–80. ACM Press, New York (2009)

    Google Scholar 

  8. Mihalcea, R.: Language independent extractive summarization. In: Proceedings of the 20th national conference on Artificial intelligence, vol. 4, pp. 1688–1689 (2005)

    Google Scholar 

  9. Montgomery, D.C., Peck, E.A., Vinin, G.G.: Introduction to linear regression analysis, 2nd edn. Wiley, Chichester (1992)

    Google Scholar 

  10. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: A new learning scheme of feedforward neural networks. In: International Joint Conference on Neural Networks 2004, vol. 2, pp. 985–990 (2004)

    Google Scholar 

  11. Matrices, D.S.: Theory and Applications, 1st edn. Springer, Heidelberg (2002)

    Google Scholar 

  12. Lin, C.Y., Hovy, E.: Automatic evaluation of summaries using n-gram co-occurrence statistics. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, vol. 1, pp. 71–78 (2003)

    Google Scholar 

  13. Luhn, H.P.: The automatic creation of literature abstracts. IBM Journal of Re- search and Development 2, 159–165 (1958)

    Article  MathSciNet  Google Scholar 

  14. Gong, Y., Liu, X.: Generic text summarization using relevance measure and latent semantic analysis. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 19–25. ACM Press, New York (2001)

    Google Scholar 

  15. MarcuM, D.: From discourse structures to text summaries. In: ACL 1997 Workshop on Intelligent Scalable Text Summarization, pp.82–88 (1997)

    Google Scholar 

  16. Neto, J.L., Freitas, A.A., Kaestner, C.A.A.: Automatic text summarization using a machine learning approach. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 205–215. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Rijsbergen, C.V.: Information Retrieval, 2nd edn. Butterworths (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, W., Zhuang, F., He, Q., Shi, Z. (2010). Effectively Leveraging Entropy and Relevance for Summarization. In: Cheng, PJ., Kan, MY., Lam, W., Nakov, P. (eds) Information Retrieval Technology. AIRS 2010. Lecture Notes in Computer Science, vol 6458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17187-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17187-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17186-4

  • Online ISBN: 978-3-642-17187-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics