
Self Organization and Self Maintenance of Mobile Ad
Hoc Networks through Dynamic Topology Control

Douglas M. Blough1, Giovanni Resta2, Paolo Santi2, and Mauro Leoncini3

1 School of ECE, Georgia Tech, Atlanta, GA, USA
2 Istituto di Informatica e Telematica del CNR, Pisa, Italy

3 Universit̀a di Modena e Reggio Emilia, Italy

Abstract. One way in which wireless nodes can organize themselves into an
ad hoc network is to execute a topology control protocol, which is designed to
build a network satisfying specific properties. A number of basic topology con-
trol protocols exist and have been extensively analyzed. Unfortunately, most of
these protocols are designed primarily for static networks and the protocol de-
signers simply advise that the protocols should be repeated periodically to deal
with failures, mobility, and other sources of dynamism. However, continuously
maintaining a network topology with basic connectivity properties is a funda-
mental requirement for overall network dependability. Current approaches con-
sider failures only as an afterthought or take a static fault tolerance approach,
which results in extremely high energy usage and low throughput. In addition,
most of the existing topology control protocols assume that transmission power
is a continuous variable and, therefore, nodes can choose an arbitrary power value
between some minimum and maximum powers. However, wireless network in-
terfaces with dynamic transmission power control permit the power to be set to
one of a discrete number of possible values. This simple restriction complicates
the design of the topology control protocol substantially. In this paper, we present
a set of topology control protocols, which work with discrete power levels and for
which we specify a version that deals specifically with dynamic networks that ex-
perience failures, mobility, and other dynamic conditions. Our protocols are also
novel in the sense that they are the first to consider explicit coordination between
neighboring nodes, which results in more efficient power settings. In this chap-
ter, we present the design of these topology control protocols, and we report on
extensive simulations to evaluate them and compare their performance against
existing protocols. The results demonstrate that our protocols produce very sim-
ilar topologies as the best protocols that assume power is a continuous variable,
while having very low communication cost and seamlessly handling failures and
mobility.

Keywords: Wireless multihop networks, topology control, dynamic networks, fault tol-
erance.

1 Introduction

The topology control problem in wireless ad hoc networks is to choose the transmission
power of each node in such a way that energy consumption is reduced and some prop-

2

erty of the communication graph (typically, connectivity) is maintained. Besides reduc-
ing energy consumption, topology control increases the capacity of the network, due to
reduced contention to access the wireless channel. In fact, in [9] it has been shown that
it is more convenient, from the network capacity point of view, to send packets along
several short hops rather than using long hops4. Given the limited availability of both
energy and capacity in ad hoc networks, topology control is thus considered a major
building block of forthcoming wireless networks.

Ideally, a topology control protocol should be asynchronous, fully distributed, fault-
tolerant, and localized (i.e., nodes should base their decisions only on information pro-
vided by their neighbors). Furthermore, it should rely on information that does not
require additional hardware on the nodes, e.g. to determine directional or location in-
formation. A final requirement of a good topology control protocol is that it generates
a connected and relatively sparse communication graph. These latter features, besides
reducing the expected contentions at the MAC layer, ease the task of finding routes
between nodes.

Most existing topology control protocols focus on initial construction of a good
topology. These protocols concentrate on static network environments where one-time
topology construction is sufficient, but do not explicitly consider how to maintain a good
topology as network conditions change. Sources of dynamism in ad hoc networks in-
clude mobility, failures, and dynamic joins of nodes. One approach, designed primarily
to deal with node failures, is to construct an initial topology that is highly redundant and
can therefore tolerate some dynamic changes without impairing basic network proper-
ties such as connectivity. However, this approach is not sufficient to deal with highly
dynamic environments such as those arising from node mobility. In addition, due to the
high level of redundancy in the initial construction, these topologies are inefficient in
that they force nodes to use higher transmission powers than necessary at a given time
to withstand potential future changes. The higher than necessary transmission powers
result in higher energy consumption by nodes, which reduces network lifetime, and in-
creased interference in the network, which degrades network performance. Thus, these
static approaches favor short-term dependability at the expense of longer-term network
survivability, while at the same time incurring very serious performance costs.

In this chapter, we propose a new approach to topology maintenance, which dy-
namically adjusts the topology on an as needed basis in response to network changes.
Our approach considers failures, and other sources of dynamism, as an inherent feature
in the network and explicitly considers how to maintain a good topology while oper-
ating the protocol in a stable and efficient manner. Thus, we do not simply propose to
reexecute a static protocol periodically, which would result in a very high overhead.
Rather, we maintain local network conditions within a certain range and take explicit
local steps to maintain those conditions only when they fall out of the specified range.
This allows us to maintain global network properties in the presence of failures, while
executing maintenance operations locally and only when sufficient changes have oc-
curred to warrant topology adjustment. In our protocols, we also assume the use of
discrete transmission power levels, an assumption that holds true in all existing net-

4 This does not necessarily hold true in worst-case distributions of nodes and for a particular
choice of the contention measure, see [5].

3

work interface cards with dynamic transmission power adjustment (a basic requirement
for topology control). We also consider explicit coordination between nodes to optimize
the topology, rather than having each node optimize its own conditions. In Section 8,
we do a thorough evaluation of our protocols, which validates their essential features,
namely that they produce good quality topologies with low energy cost and interference
while seamlessly and efficiently handling highly dynamic network conditions.

2 Related work

The topology control problem [22] has been deeply investigated in the literature in
recent years, including theoretical studies aimed at characterizing optimal topologies
according to some performance metric (see, e.g., [19, 21, 25]), and more practical ap-
proaches presenting distributed, localized topology control protocols, sometimes with
proven performance bounds with respect to optimal [2, 3, 8, 10, 15, 18, 20, 27, 28]. In-
cluded in this work is our original k-Neighbors approach [2, 3], upon which this current
work builds. Some papers [4, 5] also addressed the topology control problem with the
goal of reducing interference, instead of energy consumption as traditionally done in the
topology control literature. In this section, we discuss the topology control approaches
most relevant to this chapter, namely those explicitly designed to address fault-tolerance
and/or node mobility.

Fault-tolerant topology control has been addressed in some recent papers. Typically,
fault-tolerance is achieved by requiring some level of redundancy in the constructed
topology, e.g.,k-connectivity (for somek > 1) of the communication graph instead of
simple connectivity. For instance, in [1], the authors generalize the CBTC protocol of
[27] to constructk-connected topologies in a three-dimensional setting. A distributed
algorithm based on localized construction ofk-spanning sub-graphs is presented in
[16], while [17] mainly focuses on characterizing the critical transmission range for
k-connectivity. Other studies essentially extend topology optimization problems to the
case ofk-connectivity, e.g. [6], which deals with heterogeneous networks, and [25],
which focuses on the optimalk-connected topologies for all-to-one and one-to-all com-
munications. However, all of these approaches use static redundancy, which produces
denser topologies with higher transmission powers, and correspondingly more interfer-
ence. Thus, the topologies generated by these protocols suffer both from high energy
usage and low throughput, since many studies have shown that wireless multi-hop net-
work performance is interference limited. Despite the higher overheads associated with
static redundancy protocols, none of them are guaranteed to maintain connectivity for
mobile networks. Thus, the benefits gained from the high overheads are not at all clear.
Our alternative approach, proposed herein, dynamically adjusts the topology on an as
needed basis to maintain certain properties while failures and node mobility are occur-
ring.

Relatively few papers have been explicitly concerned not only with construction of
the network topology, but also with its maintenance in presence of dynamic network
conditions due to, e.g., node mobility, failures, and new nodes joining the network.
In [27], the authors describe a procedure to reconfigure the network topology built by
CBTC in presence of node join/leaves. However, no evaluation of the procedure’s over-

4

head nor its capability to maintain a good topology is carried out. Most of the dynamic
events discussed in [27] require the protocol to be completely reexecuted by at least one
node, which incurs substantial cost in environments with moderate to high dynamism.
In [26], the authors present a distributed algorithm for building ak-connected topology
in a three-dimensional network, and describe a procedure for updating the topology in
presence of dynamic network conditions. However, again there is no evaluation of the
performance of the protocol under dynamic conditions.

To the best of our knowledge, the only papers that explicitly deal with topology con-
trol in presence of node mobility are [18] and [21]. In [18], the authors introduce the no-
tion of contention index, and show through simulation that capacity of a mobile network
shows a high degree of correlation with the contention index independently of node
speed. Then, they present a localized, distributed protocol called MobileGrid aimed at
keeping the contention index of each node close to the optimal value. However, while
properties of the contention index have been evaluated in a mobile setting, the overall
MobileGrid protocol has been evaluated only in stationary networks. In [21], the au-
thors present two simple neighborhood-based protocols and evaluate their performance
in both static and mobile settings. However, the paper only evaluates the throughput and
average delay experienced when a set of random flows are created in the network, with
and without topology control. Although throughput and delay of a set of random flows
are an indirect indication of the quality of the underlying network topology, an explicit
evaluation of important network properties such as connectivity, average node degree,
and energy cost is missing in [21]. Thus, the one presented in this chapter is, to the best
of our knowledge, the first distributed topology control approach whose performance
(expressed in terms of connectivity, average degree, and energy cost of the constructed
topologies) is extensively evaluated in both stationary and mobile networks. In addition,
the protocols of [18, 21] both suffer from a technical flaw, which is described in detail
in the next section.

In addition to dealing with dynamic networks, the topology control protocols we
present herein are based on selection of a discrete and finite set of transmission power
levels. The idea of using level-based power changes was introduced in [20], and fur-
ther developed in [12], neither of which considers dynamic networks. The protocols
proposed in [12, 20] change the transmission power on a per-packet basis: the network
nodes exchange messages at different power levels in order to build the routing tables
(one for each level); the information contained in these tables is then used by the nodes
to set the appropriate transmission power when sending messages. Since the topology
of the network is not changed by these protocols, we call this approachpower control,
instead of topology control. Nevertheless, the assumption that transmission power can
only be set to certain predetermined values, which our protocols, as well as those of [12,
20], adopt is coherent with all existing wireless networking cards that have power con-
trol capability. Thus, this feature is essential to a practical topology control approach.

A final novel aspect of the work described in this chapter is an “unselfish” version
of our topology control protocol, in which nodes try to coordinate their power increases
in order to “minimize” the overall local power consumption. To our knowledge, this
is the first protocol to consider explicit coordination between nodes. In summary, our
protocols are the first to be evaluated thoroughly in dynamic settings, the first to con-

5

sider discrete power levels without the use of per packet power control, and the first to
consider explicit coordination between nodes.

3 Preliminaries and Working Assumptions

The protocols presented in this chapter are based on the following assumptions:

– nodes can transmit messages at different power levels, denotedp0, . . . , pmax, which
are the same for all nodes,

– message loss is handled at the MAC layer, e.g. through a retransmission mecha-
nism, and

– the wireless medium issymmetric, i.e., if nodev can receive a message sent by
nodeu at powerpi, thenu is able to receive a message sent byv using the same
powerpi.

The second assumption is very similar to the assumption of an abstract MAC layer,
recently proposed by Kuhn, Lynch, and Newport [13]. The third assumption, namely
that the wireless medium is symmetric, is not essential. In fact, this assumption is not
used in the dynamic version of the protocol presented in Section 7. In this section, we
adopt this assumption in order to simplify the presentation of the static version of the
protocol. However, the static version could easily be augmented to exchange neighbor
lists (as is done in the dynamic protocol version) instead of simple power levels (see
static protocol reported in Figure 1). With this augmentation, the symmetric medium
assumption can be removed. This change, while complicating the protocol specification,
would not increase thenumberof messages exchanged but would incur an increase in
the size of each message.

For the sake of brevity, in the following we will say that a node isat level i if its
current transmission power is set topi. Also, we will let Ai denote the radio coverage
area of a given node at leveli, i = 0, . . . ,max. Note that the assumptions above only
guarantee thatAi ⊆ Ai+1, without imposing any particular shape to the surface covered
by a node at leveli. In particular, the surface is not necessarily circular, as is assumed
in many papers.

Let G = (N,E) be the directed graph denoting the communication links in the
network, whereN is the set of nodes, with|N |= n, andE = {(u, v): v is within u’s
transmission range at the current power level} is the (directed) edge set. Clearly, as the
nodes may be at different levels,(u, v) ∈ E does not imply(v, u) ∈ E.

For every nodeu in the network, we define the following neighbor sets:

– theincoming neighbor set, denotedNi(u), whereNi(u)={v ∈ N : (v, u) ∈ E}.
– theoutgoing neighbor set, denotedNo(u), whereNo(u)={v ∈ N : (u, v) ∈ E}.
– the symmetric neighbor set, denotedNs(u), whereNs(u) = Ni(u)

⋂
No(u) =

{v ∈ N : (v, u) ∈ E and(u, v) ∈ E}.

Clearly, the neighbor sets of nodeu change asu’s level and the levels of nodes
in its vicinity vary. The ultimate goal of our topology control protocols is to cause
Ns(u) to containk (or slightly more thank) nodes, wherek is an appropriately chosen

6

parameter5. Motivations for our interest in the number ofsymmetricneighbors of a node
can be found in [2].

Note that, when a nodeu changes its level, only the setNo(u) can vary, i.e. a
node has only partial control of its set of symmetric neighbors. Furthermore, the only
neighbor set that a node can directly measure isNi(u), which is not impacted by an
increase inu’s power level. Thus, to increase the sizes ofNi(u) andNs(u), some nodes
in the vicinity of u must increase their transmission powers. This fact points out a
flaw in some existing neighborhood-based protocols, which do not use explicit control
messages.

Consider, for example, the MobileGrid protocol of Liu and Li [18]. MobileGrid
is based on a parameter called thecontention index(CI). The goal of MobileGrid is to
achieve an “optimal” value ofCI at each node. For any given nodeu, CI is defined as the
number of nodes withinu’s transmission range (includingu). However,CI is estimated
as the number of nodes whose messages can be overheard byu. Using our terminology,
CI at nodeu is defined in terms ofNo(u), but it is estimated in terms ofNi(u). If the
estimatedCI is too low at nodeu, the protocol prescribes thatu’s transmission power
be increased. This may increase the number of nodes withinu’s transmission range, but
it definitely does not increase the estimated value ofCI and might actually decrease it
due to other nodes’ responses tou’s increase. Since the estimatedCI does not increase,
u will increase its power level again at the next period and it is possible that this repeats
until u reaches the maximum power.

Another neighborhood-based protocol which does not use explicit control messages
is the LINT/LILT protocol of Ramanathan and Rosales-Hain [21]. However, in [21], the
authors assume that a symmetric set of neighboring nodes is available as a result of the
underlying routing protocol, which is left unspecified. In a certain sense, the problem
incurred by MobileGrid is thus overlooked.

In order to avoid the problem mentioned above, our neighbor-based protocols make
use of explicit control messages.

4 Basic Protocol for Static Networks

Our neighborhood-based topology control with power levels (NTC-PL) protocol imple-
ments the following idea. By circulating short control messages, nodes can let neighbors
know their current power level. Based upon this information, and knowing its own level,
a node can determine its symmetric neighborhood. If the number of symmetric neigh-
bors is too low, a node can then send one or more control messages (of a different type)
and trigger a power level increase in nearby nodes that are potential neighbors. This
process continues until there are at leastk symmetric neighbors or the node reaches
the maximum power setting. In Section 6, we will discuss how to set the value of the
fundamental parameterk.

The protocol uses two types of control messages:beaconandhelpmessages. Both
types of messages contain the sender’s ID and current power level. Beacon messages
are used to inform current (outgoing) neighbors of the power level of the sender, so that
their symmetric neighbor sets can be properly updated. On the contrary, help messages

5 This requirement will be loosened in the mobile version of the protocol.

7

are used to trigger some of the receivers to increase their transmission power level, so
that the symmetric neighbor count of the help sender is (possibly) increased.

Initially, all nodes set their powers to level 0, and send a beacon message. After
nodeu has sent this initial message, it waits for a certain stabilization timeT0, during
which it only performs interrupt handling routines in response to the messages received
by other nodes. The main goal of these routines, which are described in detail below,
is to updateu’s symmetric neighbor set. After timeT0, nodeu checks whether it has
at leastk symmetric neighbors. If so, it becomesinactive, and from this point on it
participates in the protocol by simply responding (if necessary) to the control messages
sent by other nodes. Otherwise, it remainsactive, and it enters theIncrease Symmetric
Neighbors(ISN) phase. During the ISN phase, nodeu sends help messages at increasing
power levels, with the purpose of increasing the size of its symmetric neighbor set. This
process is repeated until|Ns(u)| ≥ k, or the maximum transmission power level is
reached. The routines that are executed upon the reception of control messages are
described next.

When nodeu receives a beacon message(v, lv), it first checks whetherv ∈ Ni(u).
If so,u has already received a control message fromv, and the current beacon is simply
ignored. Otherwise,u stores in a local variablelv(u) the levellv, which represents the
minimum power level needed foru to reach nodev6. Furthermore, nodeu includesv in
its list of incoming neighbors and, iflu ≥ lv (here,lu denotesu’s current power level),
also in the list of symmetric neighbors.

When nodeu receives a help message(v, lv), it checks whether this is the first
control message received byv. If so, it sets thelv(u) variable and the set of incoming
and symmetric neighbors as described above. Furthermore, nodeu compares its power
level to lv and, if lu < lv, it increases its power level tolv, so thatv’s symmetric
neighbor set will eventually be increased in size. As a side effect, nodev is included in
Ns(u). In increasing its power from levellu to lv, nodeu sends a sequence of beacons,
one at each power level fromlu + 1 to lv. By doing so, we guarantee that when the
variablelu(y) is set at nodey, it actually stores the minimum power required fory to
reach nodeu.

If the help message(v, lv) is not the first control message fromv that is received
by u, thenv ∈ Ni(u), and nodeu knows the minimum power level needed to reach
v (which is stored in the variablelv(u)). Thus, nodeu simply checks whetherv ∈
Ns(u); if so, u is already a symmetric neighbor ofv, and the help request fromv is
ignored. Otherwise,lu < lv, and the power level ofu is increased tolv(u) (which is the
minimum level needed to renderu andv symmetric neighbors), using the same step by
step power increase procedure described above.

A pseudo-code description of the NTC-PL protocol is shown in Figure 1. In order to
improve readability, we drop theu from the variableslx(u), Ns(u), andNi(u). Finally,
we recall that when a node is at leveli, all the messages are sent at powerpi.

It is easy to see that the protocol terminates in finite time. Moreover, the following
theorem shows that there exist values of the waiting timesTl such that the protocol cor-
rectly determines a symmetric communication graph, which has the following property:
the power setting of a node is always the minimum necessary for it to havek symmet-

6 Here, the symmetry assumption of the wireless medium is used.

8

– Main:
• setl = 0, Ni = Ns = {};
• send beacon(u, l);
• seth = 0; /* Remark: remember the level before sleeping */
• wait (for a stabilization time)T0;
• repeat

- if |Ns|≥k exit; /* ... and starts operating */
- setl = h + 1; /* Go up one level (if no power increase has been forced by

interrupt handling routines) */
- send help message(u, l);
- seth = l; /* Remark: (again) remember the level before waiting */
- wait Tl;

• until l = max
• start node operations;

– Upon receiving a beacon message(v, λ):
• if v /∈ Ni

- lv = λ;
- Ni = Ni

⋃
{v};

- if l ≥ lv thenNs = Ns

⋃
{v};

– Upon receiving a help message(v, λ):
• if v ∈ Ni andv /∈ Ns stepwise-increase(l + 1, lv);
• if v /∈ Ni

- lv = λ;
- Ni = Ni

⋃
{v};

- if l < lv stepwise-increase(l + 1, lv);
elseNs = Ns

⋃
{v};

– Procedure stepwise-increase(i, f);
• for h = i, . . . , f , do:

- setl = h;
- send beacon(u, l);
- Ns = Ns

⋃
{z}, for anyz ∈ Ni s.t.l = lz;

Fig. 1.Algorithm NTC-PL performed by nodeu.

u v

w

Fig. 2. Example in which the “unselfish” behavior of nodeu generates a more energy efficient
local solution.

9

ric neighbors, except when one of its in-neighbors requires help in achieving its own
symmetric neighbor requirement.

Theorem 1 The NTC-PL protocol satisfies the following properties:

(a) the total number of control messages exchanged isO(n ·max);

moreover, there exist valuesTl, l = 0, . . . ,max, of the waiting times such that:

(b) at the end of the protocol execution, nodeu ∈ Ns(v) if and only if nodev ∈ Ns(u);
(c) nodeu sends the help message at leveli only if the number of nodes inAi−1 is

smaller thank, i < max.

Proof: By code inspection, it is easy to see that a node (either active or inactive)
sends at most one beacon and one help message per level. Hence, the total number of
control messages sent is at most2n(max + 1), which proves (a).

If the waiting timesTl are sufficiently large, all the messages triggered by a help
request sent by nodeu are received byu before the node checks its neighbor count
again. This implies that: (1) if nodev becomes symmetric neighbor ofu in response
to the help message, thenu will include v in its symmetric neighbors set after the
stabilization time, and (b) is proved; (2) denoting withni−1 the number of nodes in the
coverage areaAi−1 centered atu, nodeu will have symmetric neighbors count at least
ni−1 after sending the help message at poweri−1 and waiting for the stabilization time;
thus, nodeu sends the help message at poweri only if ni−1 < k, and (c) is proved.

5 Protocol Variation with Unselfish Behavior

The NTC-PL protocol presented in the previous Section leaves room for some opti-
mization. A first simple optimization is the following. Suppose that there is a nodeu
having fewer thank neighbors in itsAmax vicinity, and such that the surfaceAmax−Aj

centered atu is empty, for somej < max. This circumstance can be easily detected:
all that is required is one additional variableb(u) storing the last level at whichu has
added to its symmetric neighbor set. When nodeu eventually sets its level tomax, and
verifies that|Ns(u)| is still less thank, it can safely backtrack to power levelb(u).

A second and more serious opportunity for optimization is motivated by the obser-
vation that a help message in the NTC-PL protocol causesall nodes that receive it to
become symmetric neighbors of the sender, if they are not already. This mechanism
might be quite inefficient, forcing unnecessary power increases in the vicinity of the
help sender. For example, suppose the surfaceAi−1 of nodeu containsk − 1 nodes,
and that the surfaceAi − Ai−1 containsc > 1 potential symmetric neighbors. In this
case, NTC-PL would force all the nodes inAi − Ai−1 to increase their power levels,
increasingu’s symmetric neighbor set size tok + c − 1. On the other hand, a single
power increase among the nodes inAi −Ai−1 would have been sufficient foru to meet
its requirement onNs(u).

Another potential inefficiency of NTC-PL is illustrated in Figure 2. Supposek = 4
and the transmission powers of nodesu, v, andw are set to levels 2, 1, and 4, respec-
tively. Assume also that|Ns(v)| ≥ 4 and|Ns(w)| ≥ 4. Finally, suppose that the levels

10

correspond to the following transmission power settings: 1mW, 5mW, 20mW, 30mW,
50mW, and 100mW (these are the power levels used in the Cisco Aironet card [7]).
Now, nodeu has at least two choices for reaching the desired number of neighbors:

– “selfish” behavior: since|Ns(u)| < 4, send a help request at level 2, thus forcing
nodev to increase its power level;

– “unselfish” behavior: use the information stored inNi(u), which listsw, and in-
crease the level tolw(u).

In case of selfish behavior, which corresponds to the basic protocol implementation, the
overall power increase in the vicinity ofu is 10mW+25mW, due to nodeu stepping
up one level andv two levels. In case of unselfish behavior, the increase is 30mW, due
to u stepping up two levels. Hence, from a total energy standpoint, unselfishness is
preferable in this case. Note that the opposite conclusion would be drawn if the node
powers in Figure 2 were all scaled up by one level. In that case, the power increases
would change to 50mW (20mW+30mW) for the selfish approach and 70mW for the
unselfish one.

This example, with its opposite conclusions depending on the node power levels,
along with the NTC-PL inefficiency described above, motivates the design of an “un-
selfish” variation of the basic protocol, which we call NTC-PLU.

Suppose nodeu has ended its(i − 1)th round and still has fewer thank symmetric
neighbors. Its behavior is now modified according to the following rules.

– Instead of sending a help control message at leveli, which would trigger blind
power increases, nodeu sends anenquirycontrol message, carrying the same data
as the help request.

– In response to an enquiry, a node at level less thani does not immediately step up;
rather, it sends areply control message at (temporary) leveli, whose purpose is
to let u know that it is a potential helper. The reply message contains the sender’s
ID and current power level. By gathering this information from all the potential
helpers, nodeu is able to identify the locally “optimal” solution in its vicinity.

– Nodeu schedules one of several possible actions, whose aim is to satisfy the con-
straint on the symmetric neighbor set (or to get closer to it) at the minimum en-
ergy cost: (i) simply increaseu’s current power, if there are enough elements in
Ni(u) − Ns(u) to reach the thresholdk; (ii) send a generalized help (i.e., the old-
style help request); (iii) send aselectivehelp, asking a subset of the nodes inAi to
increase their power levels.

Note that in NTC-PLU some nodes perform temporary power increases, thus par-
tially impairing our periodic approach to topology control. However, these changes in
the power level occur only during the network setup phase, and not during the network
operational time, as is the case with per-packet topology control.

Selective help requests call for a decision in order to choose the target nodes. This
can be done by again using energy considerations, and ties can be broken randomly. In
any case, we remark that, because of full asynchrony and in absence of a global coordi-
nation, a solution which is locally optimal at a certain time might become sub-optimal

11

later (e.g., because a certain node in theu’s vicinity would have increased its transmis-
sion power later, in response to another help message). Unfortunately, predicting trans-
mission power increases is impossible in practice, and the optimizations performed by
NTC-PLU can be regarded only asheuristics.

With respect to NTC-PL, NTC-PLU allows a finer control of the symmetric neigh-
bor set, so a better energy efficiency is expected. On the other hand, NTC-PLU in gen-
eral exchanges more control messages as compared to NTC-PL, due to up to three
phases of interaction (enquiry–reply–help) between nodes. Thus, simulation can help
us to understand the relative performances of the two protocols.

Before ending this section, we remark that the optimizations based on the well-
known triangular inequality described in [2] can be applied to the final communication
graphs produced by both NTC-PL and NTC-PLU. In order to apply these optimizations,
which are aimed at identifying edges in the communication graph that can be pruned
without impairing connectivity and symmetry, it is sufficient that every node, at the end
of the protocol execution, sends a message containing its list of symmetric neighbors.

6 Setting the Value ofk

The desired number of symmetric neighborsk is clearly a fundamental parameter of our
protocols: small values ofk are likely to induce disconnected communication graphs,
while large values force the majority of the nodes to end protocol execution at larger
than necessary levels. In this section, we characterize the “ideal” value ofk both ana-
lytically and through simulation.

Note that, the problem of determining the ideal number of neighbors has already
been studied in [2]. However, in [2] the focus was on the number of nodes a node could
reach, rather than on symmetric neighbors. Moreover, the protocol in [2] was distance
based, and it was assumed that each node could set its transmission range to any value
between 0 and the maximum range. As a consequence, it was possible to set the nodes’
ranges so that each node had exactlyk (outgoing) neighbors. Here we are interested in
symmetric neighbors and have the availability of only a small number of power settings,
which makes it infeasible to obtain exactlyk neighbors in all cases. Nonetheless, the
results in [2] (which in turn depends on a fundamental theorem in [29]) can be used to
prove the following theorem, which holds under the assumption that the radio coverage
area is circular.

Theorem 2 Let n nodes be placed uniformly at random in[0, 1]2 and assume that
maximum power is sufficient for each node to reach at leastk other nodes. LetLk be
the actual communication graph generated by NTC-PL with parameterk, and letL−k
be the graph obtained byLk by removing the asymmetric links. Ifk ∈ Θ(log n), then
L−k is connected w.h.p.7

Proof: By property (c) of Theorem 1 and the above assumption on maximum power,
every nodeu at the end of the protocol execution has a power level sufficient to reach

7 W.h.p. means with probability converging to 1 as the numbern of network nodes goes to
infinity.

12

at least itsk closest neighbors. This means thatLk is a super-graph of thek-closest
neighbors graphGk, and also thatL−k is a super-graph of the symmetric sub-graphG−k
of Gk. Hence, the proof follows immediately by the fact that, as proven in Theorem 2
of [2], k ∈ Θ(log n) implies that graphG−k , which is a sub-graph ofL−k , is connected
w.h.p.

It can be seen that the same result of Theorem 2 holds also for the communication
graph generated by NTC-PLU.

Note that the result stated in Theorem 2 holds under the assumption of perfectly
circular coverage region, which is hardly met in practical scenarios. Yet, recent works
[14, 24] support the conjecture that the same asymptotic result on the value ofk holds
also in a cost-based connection model, which is shown in [24] to closely resemble log-
normal shadowing propagation (i.e., irregular coverage regions).

The characterization of the ideal value ofk given in Theorem 2 is of theoretical
interest, but it cannot be used in practice. Thus, we have evaluated the value ofk to be
used in the NTC-PL and NTC-PLU protocols by simulation. For different values ofn,
we have performed 1000 experiments with increasing values ofk, recording the per-
centage of connected graphs generated at the end of the protocol execution. The ideal
value ofk, which will be used in the subsequent set of simulations aimed at evaluat-
ing the performance of our protocols, is the minimum value such that at least 98% of
the graphs generated by the NTC-PL protocol are connected. Note that, in general, the
graphs generated by NTC-PL and NTC-PLU are different, so different values ofk could
be used. We have verified through our experiments that the graphs generated by NTC-
PLU are relatively less connected than those generated by NTC-PL with the same value
of k. However, with the value ofk chosen (which guarantees at least 98% of connectiv-
ity with NTC-PL), also the graphs generated by NTC-PLU show good connectivity on
the average. For this reason, in the simulations reported in Section 8, we have used the
same value ofk in both protocols.

Table 1. Ideal value ofk for different values ofn.

n k n k

50 6 300 4
100 5 350 4
150 4 400 4
200 4 450 4
250 4 500 4

The ideal values ofk for different values ofn are reported in Table 1. The value
of k = 4 provides at least 98% connectivity for values ofn in the range 150–500,
while higher values ofk are needed for smaller networks. Note that these values are
considerably smaller than those needed by thek-NEIGH protocol of [2]. As discussed
above, this is due to the fact that, on the average, several symmetric edges are added by
NTC-PL and NTC-PLU with respect to the minimum value ofk required.

13

7 Protocol Variation for Dynamic Networks

In this section, we present a protocol variation for dynamic networks, which handles
mobility, failures, and dynamic joining of nodes. The principal complicating factor in
dealing with dynamic networks for neighborhood-based protocols is the inherently tran-
sient nature of the neighbor set of a node. Due to this, we can not hope to calculateNs

exactly but only to estimate it. Consider, for example, when a node inNs(u) moves out
of range ofu. There is an unavoidable delay before this event is detected and, during
this time,Ns(u) is not accurate. One must also be careful not to adjust power levels too
quickly when topology changes occur, lest the protocol exhibit unstable behavior.

Based on the discussion above, our version of NTC-PL for dynamic networks is
based on the following two key ideas. First, in order to estimateNs, nodes periodically
send beacon messages containing their estimatedNi sets at their current power levels.
If node u hears a beacon from nodev andu ∈ Ni(v), thenu andv are symmetric
neighbors. Second, instead of trying to maintain|Ns| at a value of exactlyk, we set
low and high water marks on|Ns|, denoted byklow andkhigh, respectively. A node

initiates steps to increase its neighbor set size only when its estimated|Ns| falls below
klow and tries to decrease its neighbor set size only when the estimated|Ns| exceeds
khigh. These basic ideas are sufficient to deal with all sources of dynamism, which
include mobility, node failures, and node joins. Note also that these mechanisms no
longer rely on the assumption of a symmetric wireless medium and, hence, we remove
that assumption for this section.

The details of our procedure for estimatingNs are given in Figure 3. When a node is
first powered up, it initiates this procedure, which is described next. Nodes send beacon
messages containing theirNi sets everyT seconds, whereT is a user-specified param-
eter that provides a trade off between protocol overhead and delay in detecting changes
to the neighbor set. Whenever a nodeu receives a message (beacon or otherwise) from
nodev, u addsv to its Ni set. Whenu receives a beacon message fromv, u also adds
v to its Ns set if u appears in theNi set ofv that is contained in the beacon message.
Also when receiving a beacon message fromv, u sets a timer to expire inT seconds.
If the timer expires beforeu receives another beacon fromv, thenv is no longer an
in-neighbor (nor a symmetric neighbor) ofu.

The remainder of the protocol sets forth the actions to be taken when the size ofNs

falls belowklow or exceedskhigh. Figure 4 shows the procedure for increasing|Ns|,
while Figure 5 shows how a decrease in|Ns| is achieved.

There are two main differences in how|Ns| is increased in the dynamic case (Fig-
ure 4) compared to the static version of NTC-PL. First, a node’sNi set is included with
its help message. This is to allow nodes that receive help messages to use the most re-
cent information to determine if the sender is a symmetric neighbor given that theNs

set is only an estimate of the actual symmetric neighbor set. The second, and more im-
portant, difference is that nodes which respond to help messages increase their power
level by only one setting in the dynamic case, whereas in the static case they increase
their power to match that of the sender. Since this does not guarantee that responders
will be heard by the help requester, itsNs set might not be increased by this response.

14

Main:

l = 0; Ni ← ∅; Ns ← ∅
everyT seconds do

send beacon message (u, l, Ni)

Upon receiving an ordinary (non-beacon) message from nodev:

Ni ← Ni ∪ {v}
if Timerv = 0 then set Timerv to expire inT seconds

Upon receiving a beacon message (v, lv, Ni(v)):

Ni ← Ni ∪ {v}
if u ∈ Ni(v) thenNs ← Ns ∪ {v}
if |Ns| > khigh then call decreaseneighbors()

set Timerv to expire inT seconds

Upon expiration of Timerv:

Ni ← Ni − {v}; Ns ← Ns − {v}
if |Ns| < klow then call increaseneighbors()

Fig. 3.Procedure for estimatingNs performed by nodeu

increaseneighbors()

while (|Ns| < klow) and (l < max) do
count← 0
while (|Ns| < klow) and (count< l) do

send help message (u, l, Ni)
wait Tl

count← count+1
if (|Ns| < klow) thenl← l + 1

Upon receiving a help message (v, lv, Ni(v)):

Ni ← Ni ∪ {v}
if (u 6∈ Ni(v)) then

if (l < lv) thenl← l + 1
send beacon message (u, l, Ni)

if u ∈ Ni(v) thenNs ← Ns ∪ {v}

Fig. 4.Procedure for increasingNs performed by nodeu

15

This is the reason that help requesters send help messages multiple times at the same
power level.

While re-sending help messages at the same power level might seem inefficient, the
simulation results of Section 8.3 demonstrate that the message overhead of the dynamic
protocol is extremely low. This is due to the use of low and high water marks onk,
which are quite effective at limiting the frequency of protocol execution, making minor
inefficiencies during protocol execution much less important. The primary motivation
behind repetitive help messages at the same power level is to avoid the following sce-
nario, which can occur in networks with mobility. A node requires a high power level
while communicating in a sparse part of the network and then moves to a denser part
where nodes are communicating with much lower power levels. Since the node sends
its help message at its current power level, the basic NTC-PL protocol would poten-
tially cause many nodes in the dense part of the network to switch to very high power
levels, which is clearly wasteful of energy. The procedure in Figure 4, while using more
control messages and time, produces more graceful changes in power levels and avoids
unnecessary large increases in power by many nodes.

The need to decrease the number of neighbors (Figure 5) arises with mobility and/or
dynamic node joins, because the basic NTC-PL protocol ensures that nodes’ power lev-
els are set as small as possible. For example, with mobility, a node could require a high
power level in one area but that level could produce far more neighbors than necessary
when it moves to a new area. The ability to decrease levels is therefore required. We

decreaseneighbors()

while (l > 0) and (|Ns| > khigh) do

send a checkreduce message (u, l)
wait Tl

if stop message received then exit
otherwisel← l − 1

if |Ns| < klow thenl← l + 1

Upon receiving a checkreduce message (v, lv):

if (v ∈ Ns) and (|Ns| = klow) and (l ≥ lv)
then send stop message tov

Fig. 5.Procedure for decreasingNs performed by nodeu

must be cautious when power levels are decreased, however, lest we leave another node
with too few neighbors causing it to initiate a round of help messages and possibly lead-
ing to circular behavior. Thus, before we allow a node to reduce its level, we force it to
send a “check reduce” message to its current neighbors to make sure that the reduction
will not leave any node with too few neighbors. If any node that hears a check reduce
message fromv hasv as a symmetric neighbor, has the minimum number of symmetric
neighbors currently, and is in danger of not hearingv if v’s power level is reduced, then

16

it sends a stop message tov. If v hears at least one stop message, then it does not reduce
its power level.

One remaining question is how to chooseklow andkhigh. The main considerations
are as follows.klow should be set high enough to maintain the desired connectivity
property. For a givenklow, khigh determines the width of the allowablek range, which
influences protocol stability and message overhead. If thek range is quite wide, the
protocol will not be triggered often and it will have low overhead and exhibit stable
behavior. On the other hand, a widek range, will produce a higher averagek, which
means higher node degrees and energy costs. Thus,khigh should be set to the smallest
value that maintains stable protocol behavior and reasonable overhead. In Section 8.3,
we carefully evaluate the choices of these parameters through simulation.

Similar to the dynamic version of our protocol, the LINT protocol of [21] tries to
maintain the symmetric neighbor set size between low and high water marks. However,
LINT suffers from the same problem pointed out earlier with the MobileGrid protocol
of [18]. In LINT, nodes simply increase their transmission range when the number of
neighbors is too low. The problem is that increasing a node’s transmission range is
not guaranteed to increase its neighbor set size and might even lower it. LINT does
not do the type of local coordination that is part of our protocols and is necessary to
ensure that actions taken by nodes have the desired effect (increasing or decreasing
the neighbor set size). Thus,our dynamic protocol is the first that can guarantee a
lower bound on the symmetric neighbor set size of a node in a dynamic environment.
Furthermore, it includes the ability to decrease neighbor set sizes and to ensure that
larger-than-necessary transmission power adjustments do not occur, two features that
are not necessary in the static version of the protocol.

8 Simulations

In this section, we report the result of simulations we have performed to evaluate the
performances of our protocols, both on static networks and on dynamic networks.

The performances of the various protocols are compared with respect to the follow-
ing metrics:

– totalenergy cost, defined as the sum of the power levels of all nodes: at the end of
protocol execution for the static protocols and as a function of time for the dynamic
protocol

– averagelogical andphysicalnode degrees. The logical degree of nodeu is its de-
gree in the communication graph, while the physical degree is the number of nodes
in the radio coverage area ofu. Due to the removal of asymmetric links and to
optimizations, the physical degree is usually larger than the logical degree.

– the average number of messages per node : sent during phase 18 for the static pro-
tocols and as a function of time for the dynamic protocol

– for the dynamic protocol only, the average percentage of nodes that are in the largest
connected component (LCC) of the communication graph

8 We recall that phase 2 requires one further message per node sent in both protocols.

17

Energy cost for increasing n - Phase 1 only

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

50 100 150 200 250 300 350 400 450 500

n

e
n

e
rg

y
c
o

s
t

NTC-PL

NTC-PLU

CBTC

Energy cost for increasing n - Phase 2

0,00

0,10

0,20

0,30

0,40

0,50

0,60

50 100 150 200 250 300 350 400 450 500

n

e
n

e
rg

y
c
o

s
t

NTC-PL

NTC-PLU

CBTC

Fig. 6.Energy cost of the NTC-PL, NTC-PLU and CBTC protocols as the network size increases,
before (left) and after (right) optimization. The energy cost is normalized with respect to the case
of no topology control, where all the nodes transmit at maximum power.

The energy cost gives an idea of the energy efficiency of the topology generated by
the protocol, while the node degree (especially the physical degree) gives a measure of
the expected number of collisions at the MAC layer, and thus, of the expected impact
on network capacity [9]. The average LCC size is used to evaluate network connectivity
in the dynamic case. Note that no protocol can guarantee the network is fully connected
at all times in that case. Thus, we strive to maintain as many nodes as possible in the
largest connected component.

8.1 Simulation results for static networks: minimum density

Besides the NTC-PL and NTC-PLU protocols, we have evaluated the performance of
the CBTC protocol of [27], which is the best known static topology control protocol. We
have adapted CBTC to take into account the transmission power level actually available;
i.e., the transmission power level of any node at the end of CBTC execution is rounded
up to the next power level available.

For the three topology control protocols considered, we implemented both the basic
version (called phase 1 in the following), and the optimization that can be carried out
on the communication graph generated after phase 1 (see [2, 27] for details on the op-
timization phase). The optimization phase of the various protocols is called phase 2 in
the following.

In the first set of simulations, we have considered networks of increasing size, while
maintaining the node density at the minimum level required to guarantee connectivity
w.h.p. when all nodes transmit at maximum power.

We have considered the transmission power levels specified in the data sheets of the
Cisco Aironet 350 card [7], namely 1mW, 5 mW, 20mW, 30mW, 50mW, and 100mW.
As reported in the data sheets, the transmission range at maximum power is about 244
meters. According to this data, and assuming a distance-power gradient ofα = 2, we
have determined the transmission range at the other power levels, which are 173m,
134m, 109m, 55m and 24m, respectively. This setting of the transmission range resem-
bles a simple free space wireless channel model.

18

We have considered a simulation area of 1 square kilometer. According to the data
reported in [23], the minimum number of nodes to be deployed in the simulation area
in order to generate a communication graph which is connected w.h.p. when all the
nodes transmit at maximum power is about 100. We have then increased the number of
nodes in steps of 50, up to 500, scaling the simulation area in such a way that the node
density remains the minimum necessary for connectivity at maximum power. We have
also considered smaller networks, composed of 50 nodes.

Avg logical degree - Phase 2

3,00

3,10

3,20

3,30

3,40

3,50

3,60

3,70

3,80

3,90

4,00

50 100 150 200 250 300 350 400 450 500

n

lo
g

ic
a
l

d
e
g

re
e

NTC-PL

NTC-PLU

CBTC

Avg physical degree - Phase 2

4,20

4,60

5,00

5,40

5,80

6,20

6,60

7,00

50 100 150 200 250 300 350 400 450 500

n

p
h

y
s
ic

a
l

d
e
g

re
e

NTC-PL

NTC-PLU

CBTC

Fig. 7.Average logical (left) and physical (right) node degree after the optimization phase.

The results of this set of simulations are reported in Figures 6–8, and are averaged
over 1000 runs. From the figures, it is seen that:

– both NTC-PL and NTC-PLU clearly outperform CBTC in terms of energy cost
when optimizations are not implemented. The relative savings achieved by our pro-
tocols increase with the network size, and they can be as high as 67% (NTC-PL)
and 77% (NTC-PLU).

– when optimizations are implemented, our protocols still perform better than CBTC
in terms of energy cost. However, in this case the relative gain in performance is
less significant. The relative improvement of NTC-PL with respect to CBTC can be
as high as 21% (whenn = 150), but tends to be less significant asn increases. On
the contrary, the improvement achieved by NTC-PLU with respect to CBTC tends
to increase withn, and can be as high as 30% whenn = 500. The energy savings
achieved by our protocols with respect to the case of no topology control increase
with n, and can be as high as 86% for NTC-PL, and as high as 91% for NTC-PLU.

– concerning the logical and physical node degree of the communication graph, NTC-
PLU performs clearly better than the other protocols, especially in terms of physical
degree (which is the one that determines the expected impact on network capacity).
The average physical degree when NTC-PLU is used is as much as 26% smaller
than that generated by CBTC, and as much as 12% smaller than that generated by
NTC-PL. With respect to the case of no topology control, NTC-PLU reduces the
average physical node degree by about 75%.

– NTC-PLU always perform better than NTC-PL, with respect to both energy cost
and node degree. In terms of communication overhead, NTC-PLU exchanges more

19

Avg messages exchanged

2

3

4

5

6

7

8

9

10

50 100 150 200 250 300 350 400 450 500

n

m
e
s
s
a
g

e
s

p
e
r

n
o

d
e

NTC-PL

NTC-PLU

Fig. 8. Average number of message per node sent during phase 1 of the NTC-PL and NTC-PLU
protocols.

messages than NTC-PL when the network size is small. However, when the net-
work size increases, the situation is reversed: forn ≥ 300, NTC-PLU generates
fewer messages than NTC-PL. Although, when being executed at a particular node,
NTC-PLU generates more messages at a given power level than NTC-PL, NTC-
PLU will terminate earlier than NTC-PL in their searches for the proper power
level in some cases. For example, a node executing NTC-PLU will terminate its
protocol execution when it knows that increasing its own power to a certain level is
sufficient to achieve the proper symmetric neighborhood size and that doing so is
more efficient than stepping through more power levels and sending help messages
at each of those levels. For larger networks, the benefits of this early termination
appear to outweight the higher per level communication costs. Thus, when the net-
work size is large, NTC-PLU performs better than NTC-PL in all respects.

8.2 Simulation results for static networks: increasing density

In the second set of experiments, we have evaluated the effect of node density on the
performance of the various protocols. Starting with the minimum density scenario for
n = 100, we have increased the number of nodes up ton = 400 while leaving the side
s of the simulation area unchanged (1 kilometer in all cases).

The results of this set of simulations, which are not reported herein, are practically
identical to those obtained in the minimum density scenario. In other words, for a given
value ofn, the performance of NTC-PL, NTC-PLU and CBTC does not change with
the side of the deployment region, i.e., with the node density. This is due to the fact that
the protocols considered rely on relative, rather than absolute, location information. In
case of NTC-PL and NTC-PLU, the information considered is relative distance, while
in case of CBTC it is relative angular displacement.

We believe this result is quite interesting, since it shows thatit is only the sizen
of the network that determines the performances achieved by the various protocols, in
terms of both energy savings and increase in network capacity.

20

8.3 Simulation results for dynamic networks

The simulation set-up for dynamic networks is as follows. We focus on mobility as the
source of dynamism, because this produces a much more dynamic situation than would
typically occur with node failures and joins. The mobility model we consider is the
widely-used random waypoint model [11]. We use the same size deployment region (1
square km) and the same transmission power levels as in the static network simulations.
The number of nodes is 100. The pause time for the random waypoint model is set
to zero, to produce the most dynamic possible network. We consider both a low speed
scenario and a high speed scenario. Node velocity is set to 1 m/sec in the low speed case
and 15 m/sec in the high speed case. Nodes send beacon messages once every second
in the dynamic protocol.

One of the main issues to evaluate is how to set the lower and upper thresholds (klow
andkhigh) on neighborhood size. We carry out two sets of experiments to evaluate this.
In the first set of experiments, we gradually increase bothklow and the width of the
range. We refer to these as thek=x-2xexperiments, because we setklow to 5, 6, 7, and
8, and setkhigh to twiceklow in each case. In the second set of experiments, we fix
klow to 5 and we narrow the range by gradually reducingkhigh. We refer to these as
thek=5-x experiments.

Figures 9 and 10 show the results for thek=x-2xexperiments, at low speeds and high
speeds, respectively. We first describe the low speed results (Figure 9). With each of the
different ranges ofk values, the protocol is able to maintain more than 90% of the nodes
in the network within the largest connected component (LCC). The LCC size varies
from about 92% fork=5-10 up to about 96% fork=8-16. The protocol achieves this
while still producing substantial energy savings. The energy cost varies from about 50%
of the maximum power energy cost fork=5-10, up to around 68% of the maximum for
k=8-16. It can also be seen that having a range of neighborhood sizes within which no
protocol execution is triggered is very effective at keeping the overhead of the protocol
low. Only around 1.2 messages per second per node are sent by the protocol for each
of the neighborhood ranges. In terms of the density of the topologies that are produced,
we see that the logical degrees fall in the middle of the neighborhood range, tending
slightly toward the lower threshold. There is a steady increase in logical degree as the
lower threshold of the neighborhood range is increased. Physical degree follows the
same trends, but is slightly higher. Overall, the protocol with a neighborhood range
of k=5-10 performs quite well, achieving better than 90% of nodes in the LCC with
energy cost about 50% of the maximum power setting, a logical degree of 7, and a
physical degree of 9, while only exchanging 1.2 messages per second per node.

In looking at the high speed results (Figure 10), we see that the protocol perfor-
mance is very similar to the low speed results in terms of energy cost, logical degree,
and physical degree. The main differences are that there is more variation in the LCC
size and the message cost is higher. The variation in LCC size can be attributed to mul-
tiple neighborhood changes occurring before the protocol can finish adjusting to the
first change. This situation can temporarily cause some local connectivity losses that
are repaired with a short delay. These variations are most noticeable for the narrowest
neighborhood range (k=5-10), and are hardly noticeable for the widest range (k=8-16).
Since, at a higher speed, more neighborhood changes occur per unit of time, we would

21

expect message cost to increase. Nevertheless, the cost is still quite low, ranging from
1.5 messages per second up to 1.7 messages per second. Although LCC size is slightly
degraded compared to the low speed case, the narrowest range is still able to achieve
around 90% of the nodes in the LCC and the wider ranges are still above 90%.

Figures 11 and 12 show the results for thek=5-x experiments, at low speeds and
high speeds, respectively. Again, we focus on the low speed results (Figure 11) first.
As the neighborhood range becomes narrower, we expect that the protocol will be trig-
gered more often and so the message cost will increase. Also, since the lower threshold
of the range remains fixed, as the range becomes narrower, we should see a reduction
in logical and physical degree. The results do indeed illustrate these general trends. It is
interesting to see that when we narrow the range fromk=5-10 tok=5-9, we achieve al-
most the same LCC size, so there is little impact on the quality of the topology in terms
of connectivity. There are also noticeable benefits in terms of degree: average logical
degree and average physical degree are both reduced by 0.5, which is about a 7% reduc-
tion. There is a smaller benefit in terms of energy cost (about 4%). These benefits come
at a relatively small increase in message cost, from about 1.25 messages per second to
about 1.4 messages per second (an 11% increase). This indicates that some narrowing
of the neighborhood range is beneficial. However, when the range is narrowed further
(thek=5-8 andk=5-7 cases), the results degrade substantially. The protocol takes a long
time to converge to a stable LCC size and the message cost is substantially increased,
particularly during the transient phase while the LCC size is converging. While thek=5-
8 results do eventually reach a good state, the transient period is quite long. We believe
this is due to the random waypoint mobility model, which has a steady state node dis-
tribution that concentrates most of the nodes in the center of the region. The protocol
appears to work well with a narrow neighborhood range once this concentration effect
has occurred but poorly prior to that. Since this is just an artifact of the mobility model,
we do not recommend using the narrower neighborhood ranges in general settings.

For the high speed case (Figure 12), there is a noticeable drop-off in LCC size when
going from k=5-10 tok=5-9. However, if slightly lower than 90% LCC size can be
tolerated, thek=5-9 range has similar benefits in terms of degrees and energy to what
it achieved in the low speed case. In contrast to the low speed case, we do not see
the long convergence times for thek=5-8 andk=5-7 neighborhood ranges. We attribute
this to the faster convergence of the random waypoint model to its steady state node
distribution due to the higher speed of the nodes. Both of the narrower neighborhood
ranges perform fairly poorly here in terms of LCC size and so are probably not suitable
regardless of their better convergence behavior.

9 Discussion

In this chapter, we have presented topology control protocols that use a discrete number
of transmission power levels, as opposed to assuming that the power level can be set
to an arbitrary value in a given range. The protocols implement a neighborhood based
approach to topology control in which a node uses its numberk of nearest neighbors to
route in/out traffic. We have shown by means of extensive simulations that the proto-
cols are effective in reducing the energy cost, comparing favorably with the well known

22

Avg LCC size vs. time ‐ Low speed

80

82

84

86

88

90

92

94

96

98

100

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

%n
od

es
 in

 LC
C

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Avg energy cost ‐ Low speed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

en
er

gy
 co

st

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Avg #msg per second ‐ Low speed

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Avg Phy Deg ‐ Low speed

5

6

7

8

9

10

11

12

13

14

15

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Avg Logical Deg ‐ Low speed

5

6

7

8

9

10

11

12

13

14

15

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Fig. 9.Dynamic protocol performance: low speed nodes, different neighborhood size ranges

23

Avg LCC size vs. time ‐ High speed

80

82

84

86

88

90

92

94

96

98

100

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

%n
od

es
 in

 LC
C

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Avg energy cost‐ High speed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

en
er

gy
 co

st

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Avg #msg per second ‐ High speed

1.4

1.5

1.6

1.7

1.8

1.9

2

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Avg Phy Deg ‐ High speed

5

6

7

8

9

10

11

12

13

14

15

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Avg Logical Deg ‐ High speed

5

6

7

8

9

10

11

12

13

14

15

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=6‐12
K=7‐14
K=8‐16

Fig. 10.Dynamic protocol performance: high speed nodes, different neighborhood size ranges

24

Avg LCC size vs. time ‐ Low speed

40

50

60

70

80

90

100

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

%n
od

es
 in

 LC
C

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Avg energy cost ‐ Low speed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

en
er

gy
 co

st

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Avg #msg per second ‐ Low speed

1

1.5

2

2.5

3

3.5

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Avg Phy Deg ‐ Low speed

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Avg Logical Deg ‐ Low speed

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Fig. 11. Dynamic protocol performance: low speed nodes, different neighborhood size upper
thresholds

25

Avg LCC size vs. time ‐ High speed

40

50

60

70

80

90

100

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

%n
od

es
 in

 LC
C

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Avg energy cost‐ High speed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

en
er

gy
 co

st

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Avg #msg per second ‐ High speed

1

1.5

2

2.5

3

3.5

4

4.5

5

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Avg Phy Deg ‐ High speed

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Avg Logical Deg ‐ High speed

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

se
c 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

time (s)

#m
sg

K= 5‐10
K=5‐9
K=5‐8
K=5‐7

Fig. 12. Dynamic protocol performance: high speed nodes, different neighborhood size upper
thresholds

26

CBTC protocol of Wattenhofer, et al. [27]. We have also proposed and thoroughly eval-
uated a variation of our base protocol, which is designed for dynamic networks that
experience failures, mobility, and other dynamic conditions. Our results show that this
dynamic protocol can effectively establish and maintain topologies with low degrees
and good connectivity properties in highly dynamic environments, while incurring very
low message overheads.

Our protocols rely on appropriate selection of neighborhood size parameters:k in
the case of static networks and the range[klow, khigh] in the dynamic network case.
Our simulation results provide a starting point for selection of these parameters in actual
networks. We recommend starting with a fairly conservative choice, e.g.k = 5 for static
networks of medium to large size,k = 6 for small static networks, a range of[5, 10]
for moderately dynamic networks, and a range of[6, 12] for highly dynamic networks.
These parameters can then be gradually adjusted over time to minimize overhead and
energy consumption while maintaining desired network properties.

A final issue worth discussion is the discovery that, when nodes coordinate their
transmission power decisions, an unselfish topology control protocol performs better
than a selfish one. Thus, to optimize the overall topology, it is necessary to ensure that
nodes are acting for the common good and not in their own self-interests. Designing
schemes which can provide rewards to nodes that faithfully execute an unselfish proto-
col is an interesting topic for future research.

References

1. M. Bahramgiri, M. Hajiaghayi, and V.S. Mirrokni, “Fault-tolerant and 3-Dimensional Dis-
tributed Topology Control Algorithms in Wireless Multi-hop Networks,”Wireless Networks,
Vol. 12, no. 2, pp. 179–188, 2006.

2. D. M. Blough, M. Leoncini, G. Resta, and P. Santi, “Thek-NEIGH Protocol for Symmetric
Topology Control in Ad Hoc Networks,”in Proc. ACM MobiHoc 03, pp. 141–152, June
2003.

3. D. M. Blough, M. Leoncini, G. Resta, and P. Santi, “The k-Neighbors Approach to Inter-
ference Bounded and Symmetric Topology Control in Ad Hoc Networks,”IEEE Trans. on
Mobile Computing, Vol. 5, no. 9, pp. 1267–1282, 2006.

4. D. M. Blough, M. Leoncini, G. Resta, and P. Santi, “Topology Control with Better Radio
Models: Implications for Energy and Multi-Hop Interference,”Performance Evaluation, Vol.
64, no. 5, pp. 379–398, June 2007.

5. M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger, “Does Topology Control
Reduce Interference,”Proc. ACM Mobicom 04, pp. 9–19, 2004.

6. M. Cardei, S. Yang, and J. Wu, “Fault-Tolerant Topology Control for Heterogeneous Wire-
less Sensor Networks,”Proc. IEEE Int. Conference on Mobile Ad Hoc and Sensor Systems
(MASS), pp. 1–9, 2007.

7. Cisco Aironet 350 data sheets, available at
http://www.cisco.com/en/US/products/hw/wireless .

8. M. Dyer, J. Beutel, and L. Thiele, “S-XTC: A Signal-Strength Based Topology Control Al-
gorithm for Sensor Networks,”Proc. IEEE Int. Symp. on Autonomous Decentralized Systems
(ISADS), pp. 508–518, 2007.

9. P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,”IEEE Trans. Information
Theory, Vol. 46, no. 2, pp. 388–404, 2000.

27

10. Z. Huang, C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Topology Control for Ad Hoc
Networks with Directional Antennas,”Proc. IEEE Int. Conference on Computer Communi-
cations and Networks, pp. 16–21, 2002.

11. D. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Networks,”Mobile
Computing,Kluwer Academic Publishers, pp. 153–181, 1996.

12. V. Kawadia and P.R. Kumar, “Power Control and Clustering in Ad Hoc Networks,”in Proc.
IEEE Infocom 03, 2003.

13. F. Kuhn, N. Lynch, and C. Newport, “The Abstract MAC Layer,”Proceedings of the 23rd
International Conference on Distributed Computing,pp. 48–62, 2009.

14. F. Kuhn, R. Wattenhofer, A. Zollinger, “Ad Hoc Networks beyond Unit Disk Graphs”,Wire-
less Networks, Vol. 14, pp. 715–729, 2008.

15. L. Li, J.H. Halpern, P. Bahl, Y. Wang, and R. Wattenhofer, “A Cone-Based Distributed Topol-
ogy Control Algorithm for Wireless Multi-hop Networks,”IEEE/ACM Trans. on Networking,
Vol. 13, no. 1, 2005.

16. N. Li and J.C. Hou, “FLSS: A Fault-Tolerant Topology Control Algorithm for Wireless Sen-
sor Networks,”Proc. ACM Int. Conference on Mobile Computing and Networking (Mobi-
com), pp. 275–286, 2004.

17. X-Y. Li, P-J. Wan, Y. Wang, and C-W.. Yi, “Fault-Tolerant Deployment and Topology Con-
trol in Wireless Networks,”Proc. ACM Int. Symp. on Mobile Ad Hoc Networking and Com-
puting (MobiHoc), pp. 117–128, 2003.

18. J. Liu and B. Li, “MobileGrid: Capacity-aware Topology Control in Mobile Ad Hoc Net-
works,” Proc. IEEE Int. Conference on Computer Communications and Networks, pp. 570–
574, 2002.

19. E. Lloyd, R. Liu, M.V. Marather, R. Ramanathan, and S.S. Ravi, “Algorithmic Aspects of
Topology Control Problems for Ad Hoc Networks,”Mobile Networks and Applications, Vol.
10, n. 1-2, pp. 19-34, 2005.

20. S. Narayanaswamy, V. Kawadia, R.S. Sreenivas, and P.R. Kumar, “Power Control in Ad Hoc
Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW Protocol,”
Proc. European Wireless 2002, pp. 156–162, 2002.

21. R. Ramanathan and R. Rosales-Hain, “Topology Control of Multihop Wireless Networks
using Transmit Power Adjustment,”Proc. IEEE Infocom 2000, pp. 404–413, 2000.

22. P. Santi,Topology Control in Wireless Ad Hoc and Sensor Networks, John Wiley and Sons,
2005.

23. P. Santi and D.M. Blough,“The Critical Transmitting Range for Connectivity in Sparse Wire-
less Ad Hoc Networks,”IEEE Transactions on Mobile Computing, Vol. 2, no. 1, pp. 1–15,
January-March 2003.

24. C. Scheideler, A. Richa, P. Santi,“AnO(logn) Dominating Set Protocol for Wireless Ad Hoc
Networks under the Physical Interference Model”,Proc. ACM MobiHoc, pp. 91-100, 2008.

25. F. Wang, M.T. Thai, Y. Li, X. Cheng, and D. Du, “Fault-Tolerant Topology Control for All-
to-One and One-to-All Communication in Wireless Networks,”IEEE Trans. on Mobile Com-
puting, Vol. 7, no. 3, pp. 322–331, 2008.

26. Y. Wang, L. Cao, T.A. Dahlberg, F. Li, and X. Shi, “Self-Organizing Fault-Tolerant Topology
Control in Large-Scale Three-Dimensional Wireless Networks,”ACM Trans. on Autonomous
and Adaptive Systems, Vol. 4, no. 3, 2009.

27. R. Wattenhofer, L. Li, P. Bahl, and Y. Wang, “Distributed Topology Control for Power Ef-
ficient Operation in Multihop Wireless Ad Hoc Networks,”Proc. IEEE Infocom 2001, pp.
1388–1397, 2001.

28. R. Wattenhofer and A. Zollinger, “XTC: A Practical Topology Control Algorithm for Ad-
Hoc Networks,”Proc. Int. Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor
Networks (WMAN), 2004.

28

29. F. Xue and P.R. Kumar, “The Number of Neighbors Needed for Connectivity of Wireless
Networks,”Wireless Networks,Vol. 10, pp. 169–181, March 2004.

