Skip to main content

Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image Segmentation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6454))

Abstract

In this paper, we incorporate the global convex segmentation method and the split Bregman technique into the region-scalable fitting energy model. The new proposed method based on the region-scalable model can draw upon intensity information in local regions at a controllable scale, so that it can segment images with intensity inhomogeneity. Furthermore, with the application of the global convex segmentation method and the split Bregman technique, the method is very robust and efficient. By using a non-negative edge detector function to the proposed method, the algorithm can detect the boundaries more easily and achieve results that are very similar to those obtained through the classical geodesic active contour model. Experimental results for synthetic and real images have shown the robustness and efficiency of our method and also demonstrated the desirable advantages of the proposed method.

C.Y.K. is partially supported by NSF DMS-0811003 grant and Sloan Fellowship. S.O. is supported by an ARO MURI subcontract through the University of South Carolina.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  2. Cohen, L., Cohen, I.: Finite element methods for active contour models and balloons for 2d and 3d images. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1131–1147 (1991)

    Article  Google Scholar 

  3. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  4. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)

    Article  Google Scholar 

  5. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46, 223–247 (2002)

    Article  MATH  Google Scholar 

  6. Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13, 229–251 (1994)

    Article  Google Scholar 

  7. Samson, C., Blanc-Feraud, L., Aubert, G., Zerubia, J.: A variational model for image classification and restoration. IEEE Trans. Patt. Anal. Mach. Intell. 22, 460–472 (2000)

    Article  MATH  Google Scholar 

  8. Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10, 1169–1186 (2001)

    Article  MATH  Google Scholar 

  9. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Kimmel, R., Amir, A., Bruckstein, A.: Finding shortest paths on surfaces using level set propagation. IEEE Trans. Pattern Anal. Mach. Intell. 17, 635–640 (1995)

    Article  Google Scholar 

  12. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: Conference on Computer Vision and Pattern Recognition, pp. 430–436. IEEE, Los Alamitos (2005)

    Google Scholar 

  13. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1565–1578 (2001)

    Article  MATH  Google Scholar 

  14. Hou, Z.: A review on MR image intensity inhomogeneity correction. Int. J. Biomed. Imag. (2006)

    Google Scholar 

  15. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16, 2787–2801 (2007)

    Article  MathSciNet  Google Scholar 

  17. Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Imag. Proc. 17, 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  18. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica. D., 259–268 (1992)

    Google Scholar 

  19. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. UCLA CAM Report 08-29 (2008)

    Google Scholar 

  20. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Simul. 4, 460–489 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Houhou, N., Thiran, J.P., Bresson, X.: Fast texture segmentation based on semi-local region descriptor and active contour. Numer. Math. Theor. Meth. Appl. 2, 445–468 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. UCLA CAM Report 09-06 (2009)

    Google Scholar 

  23. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1932–1948 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, pp. 1–7. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  25. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imag. Vis. 28, 151–167 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Li, C., Kao, CY., Osher, S. (2010). Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17274-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17274-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17273-1

  • Online ISBN: 978-3-642-17274-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics