Skip to main content

Using R-Trees for Interactive Visualization of Large Multidimensional Datasets

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6454))

Included in the following conference series:

Abstract

Large, multidimensional datasets are difficult to visualize and analyze. Visualization interfaces are constrained in resolution and dimension, so cluttering and problems of projecting many dimensions into the available low dimensions are inherent. Methods of real-time interaction facilitate analysis, but often these are not available due to the computational complexity required to use them. By organizing the dataset into a level-of-detail (LOD) hierarchy, our proposed method solves problems of both inefficient interaction and visual cluttering. We do this by introducing an implementation of R-trees for large multidimensional datasets. We introduce several useful methods for interaction, by queries and refinement, to explain the relevance of interaction and show that it can be done efficiently with R-trees. We examine the applicability of hierarchical parallel coordinates to datasets organized within an R-tree, and build upon previous work in hierarchical star coordinates to introduce a novel method for visualizing bounding hyperboxes of internal R-tree nodes. Finally, we examine two datasets using our proposed method and present and discuss results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chernoff, H.: The use of faces to represent points in k-dimensional space graphically. Journal of the American Statistical Association 68, 361–368 (1973)

    Article  Google Scholar 

  2. Wright, D.B.: Scatterplot matrices. Encyclopedia of Statistics in Behavioral Science 4, 1794–1795 (2005)

    Google Scholar 

  3. Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1, 69–91 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 107–116. ACM, New York (2001)

    Google Scholar 

  5. Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. In: Proceedings of the Conference on Visualization 1999: Celebrating Ten Years, pp. 43–50. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  6. Linsen, L., Long, T.V., Rosenthal, P., Rosswog, S.: Surface extraction from multi-field particle volume data using multi-dimensional cluster visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1483–1490 (2008)

    Article  Google Scholar 

  7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: International Conference on Management of Data, pp. 47–57. ACM, New York (1984)

    Google Scholar 

  8. Forina, M.: An extendible package for data exploration, classification and correlation (2010)

    Google Scholar 

  9. Cortez, P., Morais, A.: A data mining approach to predict forest fires using meteorological data. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874. Springer, Heidelberg (2007)

    Google Scholar 

  10. Rosenbaum, R., Hamann, B.: Progressive presentation of large hierarchies using treemaps. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 71–80. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giménez, A., Rosenbaum, R., Hlawitschka, M., Hamann, B. (2010). Using R-Trees for Interactive Visualization of Large Multidimensional Datasets. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17274-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17274-8_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17273-1

  • Online ISBN: 978-3-642-17274-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics