Skip to main content

Automatic Detection of Morphologically Distinct Objects in Biomedical Images Using Second Generation Wavelets and Multiple Marked Point Process

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6455))

Included in the following conference series:

  • 1609 Accesses

Abstract

Automatically analyzing morphology of biological objects such as cells, nuclei, and vessels is important for medicine and biology. However, detecting individual biological objects is challenging because biomedical images tend to have a complex structure composed of many morphologically distinct objects and unclear object boundaries. In this paper, we present a novel approach to automatically detect individual objects in biomedical images using a multiple marked point process, in which points are the positions of the objects and marks are their geometric attributes. With this model, we can consider both prior knowledge of the structure of the objects and observed data of an image in object detection. Our proposed method also uses the second generation wavelets-based edge-preserving image smoothing technique to cope with unclear boundaries of biological objects. The experimental results show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doi, K.: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4-5), 198–211 (2007)

    Article  Google Scholar 

  2. Carpenter, A.E., Sabatini, D.M.: Systematic genome-wide screens of gene function. Nature Review Genetics 5, 11–22 (2004)

    Article  Google Scholar 

  3. Yoo, T., Metaxas, D.: Open science – combining open data and open source software: medical image analysis with the Insight Toolkit. Medical Image Analysis 9, 503–506 (2005)

    Article  Google Scholar 

  4. Chang, Y.L., Li, X.: Adaptive image region-growing. IEEE Trans. Image Processing 3(6), 868–872 (1994)

    Article  Google Scholar 

  5. Vincent, L., Soille, P.J.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Machine Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  6. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Machine Intelligence 17(2), 158–175 (1995)

    Article  Google Scholar 

  7. Carpenter, A.E., et al.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7, R100 (2006)

    Article  Google Scholar 

  8. Dougherty, E.R.: Mathematical morphology in image processing. CRC press, Boca Raton (1992)

    Google Scholar 

  9. McCullough, D.P., Gudla, P.R., Harris, B.S., Collins, J.A., Meaburn, K.J., Nakaya, M., Yamaguchi, T.P., Misteli, T., Lockett, S.J.: Segmentation of whole cells and cell nuclei from 3D optical microscope images using dynamic programming. IEEE Trans. Medical Imaging 27(5), 723–734 (2008)

    Article  Google Scholar 

  10. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomedical Engineering 57(4), 841–852 (2010)

    Article  Google Scholar 

  11. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comp. Vis. 30(2), 79–116 (1998)

    Article  Google Scholar 

  12. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comp. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  13. Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Medical Imaging 28(9), 1488–1497 (2009)

    Article  Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Intl. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  15. Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graphics 28(3) (2009)

    Google Scholar 

  16. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. ICCV, pp. 839–846 (1998)

    Google Scholar 

  17. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. http://www.michaelbach.de/ot/cog_dalmatian/

  19. Gilbert, C.D., Sigman, M.: Brain states: top-down influences in sensory processing. Neuron 54(5), 677–696 (2007)

    Article  Google Scholar 

  20. Descombes, X., Minlos, R., Ehizhina, E.: Object extraction using a stochastic birth-and-death dynamics in continuum. J. Math. Imaging Vis. 33, 347–359 (2009)

    Article  MathSciNet  Google Scholar 

  21. Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Anal. Machine Intelligence 27(10), 1568–1579 (2005)

    Article  MATH  Google Scholar 

  22. Ortner, M., Descombes, X., Zerubia, J.: Building outline extraction from digital elevation models using marked point processes. Int. J. Comp. Vis. 72(2), 107–132 (2007)

    Article  Google Scholar 

  23. Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Metropolis, M., Rosenbluth, A., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  25. Abutaleb, A.S.: Automatic thresholding of gray-level pictures using two-dimensional entropy. In: Computer Vision, Graphics, and Image Processing, vol. 47, pp. 22–32 (1989)

    Google Scholar 

  26. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Modeling and Computer Simulation 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  27. Gelasca, E.D., Obara, B., Fedorov, D., Kvilekval, K., Manjunath, B.S.: A biosegmentation benchmark for evaluation of bioimage analysis methods. BMC Bioinformatics 10, 368 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hatsuda, H. (2010). Automatic Detection of Morphologically Distinct Objects in Biomedical Images Using Second Generation Wavelets and Multiple Marked Point Process. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17277-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17277-9_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17276-2

  • Online ISBN: 978-3-642-17277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics