Skip to main content

Aggregating Low-Level Features for Human Action Recognition

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

Recent methods for human action recognition have been effective using increasingly complex, computationally-intensive models and algorithms. There has been growing interest in automated video analysis techniques which can be deployed onto resource-constrained distributed smart camera networks. In this paper, we introduce a multi-stage method for recognizing human actions (e.g., kicking, sitting, waving) that uses the motion patterns of easy-to-compute, low-level image features. Our method is designed for use on resource-constrained devices and can be optimized for real-time performance. In single-view and multi-view experiments, our method achieves 78% and 84% accuracy, respectively, on a publicly available data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104, 249–257 (2006)

    Article  Google Scholar 

  2. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104, 90–126 (2006)

    Article  Google Scholar 

  3. Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognition 36, 585–601 (2003)

    Article  Google Scholar 

  4. Davis, J.W., Bobick, A.F.: The representation and recognition of human movement using temporal templates. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 928–934 (1997)

    Google Scholar 

  5. Ramanan, D., Forsyth, D., Zisserman, A.: Strike a pose: tracking people by finding stylized poses. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 271–278 (2005)

    Google Scholar 

  6. Oikonomopoulos, A., Patras, I., Pantic, M.: Spatiotemporal salient points for visual recognition of human actions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36, 710–719 (2005)

    Article  Google Scholar 

  7. Fathi, A., Mori, G.: Action recognition by learning mid-level motion features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (June 2008)

    Google Scholar 

  8. Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV 2003, Washington, DC, USA, p. 726. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  9. Gilbert, A., Illingworth, J., Bowden, R.: Scale invariant action recognition using compound features mined from dense spatio-temporal corners. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 222–233. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Laptev, I., Lindeberg, T.: Local descriptors for spatio-temporal recognition. In: MacLean, W.J. (ed.) SCVMA 2004. LNCS, vol. 3667, pp. 91–103. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Mori, G., Malik, J.: Recovering 3d human body configurations using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1052–1062 (2006)

    Article  Google Scholar 

  12. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37, 151–172 (2000)

    Article  MATH  Google Scholar 

  13. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. International Journal of Computer Vision 73, 263–284 (2007)

    Article  Google Scholar 

  14. Willis, A., Sui, Y.: An algebraic model for fast corner detection. In: 2009, IEEE 12th International Conference on Computer Vision, pp. 2296–2302 (2009)

    Google Scholar 

  15. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  16. Loy, G., Zelinsky, A.: Fast radial symmetry for detecting points of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 959–973 (2003)

    Article  MATH  Google Scholar 

  17. Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of the Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  18. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)

    Article  Google Scholar 

  19. Grauman, K., Darrell, T.: The Pyramid Match Kernel: Efficient Learning with Sets of Features. Journal of Machine Learning Research (JMLR) 8, 725–760 (2007)

    MATH  Google Scholar 

  20. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)

    Google Scholar 

  21. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vision 7, 11–32 (1991)

    Article  Google Scholar 

  22. Cortes, C., Vapnik, V.: Support-vector networks. In: Machine Learning, pp. 273–297 (1995)

    Google Scholar 

  23. Kovesi, P.D.: MATLAB and Octave functions for computer vision and image processing. School of Computer Science & Software Engineering, The University of Western Australia (2000), http://www.csse.uwa.edu.au/~pk/research/matlabfns/

  24. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008), http://www.vlfeat.org

  25. Kulkarni, K., Cherla, S., Kale, A., Ramasubramanian, V.: A framework for indexing human actions in video. In: The 1st International Workshop on Machine Learning for Vision-based Motion Analysis, MLVMA 2008 (2008)

    Google Scholar 

  26. Souvenir, R., Parrigan, K.: Viewpoint manifolds for action recognition. EURASIP Journal on Image and Video Processing 2009, 13 pages (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parrigan, K., Souvenir, R. (2010). Aggregating Low-Level Features for Human Action Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics