Skip to main content

Introducing a Statistical Behavior Model into Camera-Based Fall Detection

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

Camera based fall detection represents a solution to the problem of people falling down and being not able to stand up on their own again. For elderly people who live alone, such a fall is a major risk. In this paper we present an approach for fall detection based on multiple cameras supported by a statistical behavior model. The model describes the spatio-temporal unexpectedness of objects in a scene and is used to verify a fall detected by a semantic driven fall detection. In our work a fall is detected using multiple cameras where each of the camera inputs results in a separate fall confidence. These confidences are then combined into an overall decision and verified with the help of the statistical behavior model. This paper describes the fall detection approach as well as the verification step and shows results on 73 video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grundy, E., Tomassini, C., Festy, P.: Demographic change and the care of older people: introduction. European Journal of Population 22, 215–218 (2006)

    Article  Google Scholar 

  2. Wild, D., Nayak, U., Isaacs, B.: How dangerous are falls in old people at home? British Medical Journal 282, 266–268 (1981)

    Article  Google Scholar 

  3. Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Probabilistic posture classification for human-behavior analysis. SMC-A: Systems and Humans 35, 42–54 (2005)

    Google Scholar 

  4. Anderson, D., Keller, J., Skubic, M., Chen, X., He, Z.: Recognizing falls from silhouettes. In: International Conference of the Engineering in Medicine and Biology Society, pp. 6388–6391 (2006)

    Google Scholar 

  5. Toreyin, B., Dedeoglu, Y., Çetin, A.: HMM based falling person detection using both audio and video. In: Sebe, N., Lew, M., Huang, T.S. (eds.) HCI/ICCV 2005. LNCS, vol. 3766, pp. 211–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Tao, J., Turjo, M., Wong, M., Wang, M., Tan, Y.: Fall incidents detection for intelligent video surveillance. In: Fifth International Conference on Information, Communications and Signal Processing, pp. 1590–1594 (2005)

    Google Scholar 

  7. Thome, N., Miguet, S., Ambellouis, S.: A Real-Time, Multiview Fall Detection System: A LHMM-Based Approach. IEEE TCSVT 18, 1522–1532 (2008)

    Google Scholar 

  8. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Monocular 3D head tracking to detect falls of elderly people. In: International Conference of the Engineering in Medicine and Biology Society, pp. 6384–6387 (2006)

    Google Scholar 

  9. Lin, C., Ling, Z., Chang, Y., Kuo, C.: Compressed-domain Fall Incident Detection for Intelligent Homecare. Journal of VLSI Signal Processing 49, 393–408 (2007)

    Article  Google Scholar 

  10. Huang, C., Chen, E., Chung, P.: Fall detection using modular neural networks with back-projected optical flow. Biomedical Engineering: Applications, Basis and Communications 19, 415–424 (2007)

    Google Scholar 

  11. Anderson, D., Luke, R., Keller, J., Skubic, M., Rantz, M., Aud, M.: Linguistic summarization of video for fall detection using voxel person and fuzzy logic. Computer Vision and Image Understanding 113, 80–89 (2009)

    Article  Google Scholar 

  12. Nater, F., Grabner, H., Van Gool, L.: Exploiting simple hierarchies for unsupervised human behavior analysis. In: International Conference on Computer Vision and Pattern Recognition (2010) (to appear)

    Google Scholar 

  13. Nait-Charif, H., McKenna, S.: Activity summarisation and fall detection in a supportive home environment. In: International Conference on Proceedings of the Pattern Recognition, vol. 4, pp. 323–326 (2004)

    Google Scholar 

  14. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. PAMI 19, 780–785 (1997)

    Article  Google Scholar 

  15. Kampel, M., Hanbury, A., Blauensteiner, P., Wildenauer, H.: Improved motion segmentation based on shadow detection  6, 1–12 (2007)

    Google Scholar 

  16. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ermis, E., Saligrama, V., Jodoin, P.M., Konrad, J.: Abnormal behavior detection and behavior matching for networked cameras. In: Second ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–10 (2008)

    Google Scholar 

  18. Noury, N., Fleury, A., Rumeau, P., Bourke, A., Laighin, G., Rialle, V., Lundy, J.: Fall detection–Principles and methods. In: International Conference of the Engineering in Medicine and Biology Society, pp. 1663–1666 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zweng, A., Zambanini, S., Kampel, M. (2010). Introducing a Statistical Behavior Model into Camera-Based Fall Detection. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics