Abstract
This paper presents a new automatic method to significantly attenuate the color degradation due to shading in color images of the human skin. Shading is caused by illumination variation across the scene due to changes in local surface orientation, lighting conditions, and other factors. Our approach is to estimate the illumination variation by modeling it with a quadric function, and then relight the skin pixels with a simple operation. Therefore, the subsequent color skin image processing and analysis is simplified in several applications. We illustrate our approach in two typical color imaging problems involving human skin, namely: (a) pigmented skin lesion segmentation, and (b) face detection. Our preliminary experimental results show that our shading attenuation approach helps reducing the complexity of the color image analysis problem in these applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shapiro, L., Stockman, G.: Computer Vision. Prentice Hall, Englewood Cliffs (2001)
Whited, J.D.: Teledermatology research review. Int. J. Dermatol. 45, 220–229 (2006)
Massone, C., Wurm, E.M.T., Hofmann-Wellenhof, R., Soyer, H.P.: Teledermatology: an update. Semin. Cutan. Med. Surg. 27, 101–105 (2008)
Melanoma Research Project, http://www.melresproj.com
Soille, P.: Morphological operators. In: Jähne, B., Haußecker, H., Geißler, P. (eds.) Handbook of Computer Vision and Applications, vol. 2, pp. 627–682. Academic Press, San Diego (1999)
Celebi, M.E., Kingravi, H.A., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V., Moss, R.H., Malters, J.M., Grichnik, J.M., Marghoob, A.A., Rabinovitz, H.S., Menzies, S.W.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 14, 347–353 (2008)
Melli, R., Grana, C., Cucchiara, R.: Comparison of color clustering algorithms for segmentation of dermatological images. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Medical Imaging 2006: Image Processing, SPIE, vol. 6144, p. 61443S (2006)
Maglogiannis, I., Doukas, C.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Transactions on Information Technology in Biomedicine 13, 721–733 (2009)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9, 62–66 (1979)
Dermnet Skin Disease Image Atlas, http://www.dermnet.com
Vassili, V.V., Sazonov, V., Andreeva, A.: A survey on pixel-based skin color detection techniques. In: Proc. Graphicon 2003, pp. 85–92 (2003)
Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial features. In: Proceedings of Pointing 2004, ICPR, International Workshop on Visual Observation of Deictic Gestures, Cambridge, UK (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cavalcanti, P.G., Scharcanski, J., Lopes, C.B.O. (2010). Shading Attenuation in Human Skin Color Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-17289-2_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17288-5
Online ISBN: 978-3-642-17289-2
eBook Packages: Computer ScienceComputer Science (R0)