Skip to main content

Speeding Up HOG and LBP Features for Pedestrian Detection by Multiresolution Techniques

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

In this article, we present a fast pedestrian detection system for driving assistance. We use current state-of-the-art HOG and LBP features and combine them into a set of powerful classifiers. We propose an encoding scheme that enables LBP to be used efficiently with the integral image approach. This way, HOG and LBP block features can be computed in constant time, regardless of block position or scale. To further speed up the detection process, a coarse-to-fine scanning strategy based on input resolution is employed. The original camera resolution is consecutively downsampled and fed to different stage classifiers. Early stages in low resolutions reject most of the negative candidate regions, while few samples are passed through all stages and are evaluated by more complex features. Results presented on the INRIA set show competetive accuracy performance, while both processing and training time of our system outperforms current state-of-the-art work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 893–886 (2005)

    Google Scholar 

  2. Geronimo, D., Lopez, A., Ponsa, D., Sappa, A.: Haar wavelets and edge orientation histograms for On Board pedestrian detection. In: Pattern Recognition and Image Analysis, pp. 418–425 (2007)

    Google Scholar 

  3. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: Survey and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2179–2195 (2009)

    Article  Google Scholar 

  4. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: A benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 304–311 (2009)

    Google Scholar 

  5. Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B.: Discriminative local binary patterns for human detection in personal album. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  6. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: IEEE International Conference on Computer Vision, ICCV 2009 (2009)

    Google Scholar 

  7. Agarwal, A., Triggs, W.: Hyperfeatures - multilevel local coding for visual recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 30–43. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1713–1727 (2008)

    Article  Google Scholar 

  9. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: Ninth IEEE International Conference on Computer Vision, Proceedings, vol. 2, pp. 734–741 (2003)

    Google Scholar 

  10. Zhu, Q., Avidan, S., chen Yeh, M., ting Cheng, K.: Fast human detection using a cascade of histograms of oriented gradients. In: CVPR 2006, pp. 1491–1498 (2006)

    Google Scholar 

  11. Chen, Y., Chen, C.: Fast human detection using a novel boosted cascading structure with meta stages. IEEE Transactions on Image Processing 17, 1452–1464 (2008)

    Article  MathSciNet  Google Scholar 

  12. Geismann, P., Schneider, G.: A two-staged approach to vision-based pedestrian recognition using haar and HOG features. In: 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, Netherlands, pp. 554–559 (2008)

    Google Scholar 

  13. Zhang, W., Zelinsky, G., Samaras, D.: Real-time accurate object detection using multiple resolutions. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  14. Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 829–836 (2005)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from Scale-Invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  16. Ojala, T., Pietikinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29, 51–59 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geismann, P., Knoll, A. (2010). Speeding Up HOG and LBP Features for Pedestrian Detection by Multiresolution Techniques. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics