Abstract
Image Registration is a central task to many medical image analysis applications. In this paper, we present a novel iterative algorithm composed of two main steps: a global affine image registration based on particle filter, and a local refinement obtained from a linear optical flow approximation. The key idea is to iteratively apply these simple and robust steps to efficiently solve complex non-rigid multimodal or unimodal image registrations. Finally, we present a set of evaluation experiments demonstrating the accuracy and applicability of the method to medical images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hajnal, J., Hawkes, D., Hill, D.: Medical image registration. CRC, Boca Raton (2001)
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)
Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)
Brown, L.G.: A survey of image registration techniques. ACM Computing Survey 24, 326–376 (1992)
Wells III, W.M., Viola, P.A., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1, 35–51 (1996)
Maes, F., Collignon, A., Vadermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Image. 16, 187–198 (1997)
Zhang, J., Rangarajan, A.: Bayesian Multimodality Non-rigid image registration via conditional density estimation. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 499–512. Springer, Heidelberg (2003)
Periaswamya, S., Farid, H.: Medical image registration with partial data. Medical Image Analisys 10, 452–464 (2006)
Arce-Santana, E., Alba, A.: Image registration using markov random coefficient and geometric transformation fields. Pattern Recognition 42, 1660–1671 (2009)
Bagci, U., Bai, L.: Multiresolution elastic medical image registration in standard intensity scale. Computer Graphics and Image Processing 29, 305–312 (2007)
Yang, X., Zhang, Z., Zhou, P.: Local elastic registration of multimodal image using robust point matching and compact support RBF. In: International Conference on BioMedical Engineering and Informatic, BMEI-(2008)
Arce-Santana, E., Campos-Delgado, D.U., Alba, A.: ISVC 2009. LNCS, vol. 5875, pp. 554–563. Springer, Heidelberg (2009)
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions On Signal Processing 50, 174–188 (2002)
Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)
Rugh, W.J.: Linear System Theory. Prentice-Hall, Englewood Cliffs (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arce-Santana, E., Campos-Delgado, D.U., Alba, A. (2010). A Non-rigid Multimodal Image Registration Method Based on Particle Filter and Optical Flow. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-17289-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17288-5
Online ISBN: 978-3-642-17289-2
eBook Packages: Computer ScienceComputer Science (R0)