Skip to main content

A Spatial-Temporal Frequency Approach to Estimate Cardiac Motion

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

  • 1796 Accesses

Abstract

The estimation of left ventricle motion and deformation from series of images has been an area of attention in the medical image analysis and still remains an open and challenging research problem. The proper tracking of left ventricle wall can contribute to isolate the location and extent of ischemic or infarcted myocardium. This work describes a method to automatically estimate the displacement fields for a beating heart based on the study of the variation in the frequency content of a non-stationary image as time varies. Results obtained with this automated method in synthetic images are compared with traditional gradient based method. Furthermore, experiments involving cardiac SPECT images are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meier, G.D., Ziskin, M., Santamore, W.P., Bove, A.: Kinematics of the beating heart. IEEE Transaction on Biomedical Engineering 27, 319–329 (1980)

    Article  Google Scholar 

  2. Blokland, J.A.K., Reiber, J.H.C., Pauwels, E.K.J.: Quantitative analysis in single photon emission tomography (SPET). Eur. J. Nucl. Med. 19, 47–61 (1992)

    Article  Google Scholar 

  3. Garcia, E.V., Van Train, K., Maddahi, J., Prent, F., Areeda, J.: Quantification of rotational thallium-201 myocardial tomography. Journal of Nuclear Medicine 26, 17–26 (1985)

    Google Scholar 

  4. Laplante, P.A., Stoyenko, A.D.: Real-time imaging: theory, techniques and applications. IEEE Press, New York (1996)

    Google Scholar 

  5. Pinho, R., Tavares, J.: Tracking Features in Image Sequences with Kalman Filtering, Global Optimization, Mahalanobis Distance and a Management Model. Computer Modeling in Engineering & Sciences 46(1), 51–75 (2009)

    MATH  Google Scholar 

  6. Pinho, R., Tavares, J., Correia, M.: Efficient Approximation of the Mahalanobis Distance for Tracking with the Kalman Filter. Int. Journal of Simulation Modelling 6(2), 84–92 (2007)

    Article  Google Scholar 

  7. Fennema, C.L., Thompson, W.B.: Velocity determination in scenes containing several moving objects. Computer Vision, Graphics and Image Processing 9, 301–315 (1979)

    Article  Google Scholar 

  8. Horn, B.K.P.: Robot Vision. McGraw-Hill, New York (1996)

    Google Scholar 

  9. Sagan, H.: Introduction to the Calculus of Variations. Dover Publications, New York (1969)

    Google Scholar 

  10. Axelsson, O.: In Iterative solution methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  11. Herman, G.T.: In Medical imaging systems techniques and applications: computational techniques. In: Leondes, C.T. (ed.). Gordon and Breach Science Publishers, Amsterdam (1998)

    Google Scholar 

  12. Beauchemin, S.S., Barron, J.L.: On the Fourier Properties of Discontinuous Motion. Journal of Mathematical Imaging and Vision 13(3), 155–172 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Langer, M.S., Mann, R.: Optical Snow. International Journal of Computer Vision 55(1), 55–71 (2003)

    Article  MATH  Google Scholar 

  14. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. Journal of Optical Society of America A 12, 284–299 (1985)

    Article  Google Scholar 

  15. Gafni, H., Zeevi, Y.Y.: A model for processing of movement in the visual system. Biological Cybernetics 32, 165–173 (1979)

    Article  MATH  Google Scholar 

  16. Cohen, L.: In Time-frequency analysis. Prentice Hall PTR, New Jersey (1995)

    Google Scholar 

  17. Jacobson, L.D., Wechsler, H.: Joint spatial/spatial-frequency representation. Signal Processing 14, 37–68 (1988)

    Article  Google Scholar 

  18. Chapra, S.C., Canale, R.P.: In Numerical methods for engineers with programming and software applications. McGraw-Hill, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutierrez, M., Rebelo, M., Meyering, W., Feijóo, R. (2010). A Spatial-Temporal Frequency Approach to Estimate Cardiac Motion. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics