Skip to main content

Toward an Automatic Hole Characterization for Surface Correction

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

This paper describes a method for Automatic hole characterization on 3D meshes, avoiding user intervention to decide which regions of the surface should be corrected. The aim of the method is to classify real and false anomalies without user intervention by using a contours irregularity measure based on two geometrical estimations: the torsion contour’s estimation uncertainty, and an approximation of geometrical shape measure surrounding the hole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vision Comput. 10(8), 557–565 (1992) ISSN:0262-8856

    Article  Google Scholar 

  2. Lewiner, T., Gomes Jr., J.D., Lopes, H., Craizer, M.: Curvature and torsion estimators based on parametric curve fitting. Computers & Graphics 29(5), 641–655 (2005) ISSN 0097-8493

    Article  Google Scholar 

  3. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comp. 37(155), 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lancaster, P., Salkauskas, k.: Curve and Surface Fitting: An Introduction. Academic Press, London (2002)

    MATH  Google Scholar 

  5. Ariel, C.: Lectures on Probability, Entropy, and Statistical Physics. Al-bany: Department of Physics, University at Albany (2008); 0808.0012

    Google Scholar 

  6. Sun, X., et al.: Noise in 3D laser range scanner data. In: IEEE International Conference on Shape Modeling and Applications, SMI 2008, pp. 37–45 (2008)

    Google Scholar 

  7. Turk, G., Levoy, M.: Zippered polygon meshes from range images, pp. 311–318. ACM, New York (1994)

    Google Scholar 

  8. Curless, B.: New Methods for Surface Reconstruction from Range Images. Stanford University (1997)

    Google Scholar 

  9. Kumar, A., et al.: A Hole-filling Algorithm Using Non-uniform Rational B-splines, pp. 169–182. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  10. Besl, P.J.: The free-form surface matching problem, in Machine Vision for Three-Dimensional Scenes. Academic Press, London (1990)

    Google Scholar 

  11. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces, pp. 163–170. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  12. do Carmo, M.: Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  13. Dorai, C., et al.: Registration and Integration of Multiple Object Views for 3D Model Construction. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 83–89 (1998)

    Article  Google Scholar 

  14. Curless, B., Levoy, M.: A volumetric method for building complex models from range images, pp. 303–312. ACM Press, New York (1996)

    Google Scholar 

  15. Carr, J.C., et al.: Smooth surface reconstruction from noisy range data, pp. 119–126. ACM Press, New York (2003)

    Google Scholar 

  16. Davis, J., et al.: Filling Holes in Complex Surfaces Using Volumetric Diffusion, pp. 428–438 (2002)

    Google Scholar 

  17. Wang, J., Oliveira, M.M.: A hole-filling strategy for reconstruction of smooth surfaces in range images. In: XVI Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI 2003, pp. 11–18 (2003)

    Google Scholar 

  18. Podolak, J., Rusinkiewicz, S.: Atomic volumes for mesh completion, p. 33. Eurographics Association (2005)

    Google Scholar 

  19. Bischoff, S., Pavic, D., Kobbelt, L.: Automatic restoration of polygon models. ACM Trans. Graph. 24, 1332–1352 (2005)

    Article  Google Scholar 

  20. Guo, T., et al.: Filling Holes in Meshes and Recovering Sharp Edges. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2006, vol. 6, pp. 5036–5040 (2006)

    Google Scholar 

  21. Bendels, G.H., Schnabel, R., Klein, R.: Fragment-based Surface Inpainting. In: Desbrun, M., Pottmann, H. (eds.) The Eurographics Association (2005)

    Google Scholar 

  22. Branch, J., Prieto, F., Boulanger, P.: Automatic Hole-Filling of Triangular Meshes Using Local Radial Basis Function, pp. 727–734. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  23. Liepa, P.: Filling holes in meshes, pp. 200–205. Eurographics Association (2003)

    Google Scholar 

  24. Zhao, W., Gao, S., Lin, H.: A robust hole-filling algorithm for triangular mesh. Vis. Comput. 23, 987–997 (2007)

    Article  Google Scholar 

  25. Ju, T.: Robust repair of polygonal models, pp. 888–895. ACM, New York (2004)

    Google Scholar 

  26. Chen, C.-Y., Cheng, K.-Y.: A Sharpness-Dependent Filter for Recovering Sharp Features in Repaired 3D Mesh Models. IEEE Transactions on Visualization and Computer Graphics 14, 200–212 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanchez T., G., Branch, J.W. (2010). Toward an Automatic Hole Characterization for Surface Correction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics