Skip to main content

UNIFAC Group Interaction Prediction for Ionic Liquid-Thiophene Based Systems Using Genetic Algorithm

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

Abstract

The group interaction parameter prediction of Ionic Liquids(IL’s) with thiophene (C4H4S) and other hydrocarbons are essential to generate (Liquid Liquid Equilibria) LLE through UNIFAC model. UNIFAC model is highly non-convex and can have several local extrema. In this work, the structural group interaction parameters have been calculated for [OMIM][BF4] + thiophene + hydrocarbons and [OMIM] [BTI] + thiophene + hydrocarbons systems through regression using GA.The obtained LLE data has been correlated with reported values and it was observed that the cumulative RMSD(root mean square deviation) of ten ternary systems used for regression were 3.01% and 3.65% for [OMIM][BF4] and [OMIM]BTI] based system respectively. Further, the obtained interaction parameters were used to correlate the experimental LLE data for four ternary systems which were not used for regression. These systems having a total of 40 tie lines gave a very satisfactory RMSD of 1.76 to 3.99% between reported and predicted composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Environment Protection Agency, http://www.epa.gov/otaq/tr2home.html

  2. Zhang, S., Zhang, Q., Zhang, Z.: Extractive Desulfurization and Denitrogenation of Fuels Using Ionic Liquids. Ind. Eng. Chem. Res. 43, 614–622 (2004)

    Article  Google Scholar 

  3. Fredenslund, Jones, R.L., Prausnitz, J.M.: Group contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1087–1099 (1975)

    Article  Google Scholar 

  4. Seader, J.D., Henley, E.J.: Separation Process Principles. John Wiley, New York (1998)

    Google Scholar 

  5. Vasquez, V.R., Whiting, W.B.: Regression of binary interaction parameters for thermodynamic models using an inside-variance estimation method (IVEM). Fluid Phase Equilib. 170, 235–253 (2000)

    Article  Google Scholar 

  6. Houck, C.R., Joines, J.A., Kay, M.G.: Comparison of genetic algorithms, random restart, and two-opt switching for solving large location-allocation problems. Comp. Oper. Res. 23, 587–596 (1996)

    Article  MATH  Google Scholar 

  7. MATLAB GA Toolbox, http://www.ise.ncsu.edu/kay/gaotv5.zip

  8. Sahoo, R.K., Banerjee, T., Ahmad, S.A., Khanna, A.: Improved Binary Parameters using GA for Multi-Component Aromatic Extraction: NRTL Model without and with Closure Equations. Fluid Phase Equilib. 239, 107–119 (2006)

    Article  Google Scholar 

  9. Singh, M.K., Banerjee, T., Khanna, A.: Genetic algorithm to estimate interaction parameters of multicomponent systems for liquid–liquid equilibria. Comp. Chem. Engg. 29, 1712–1719 (2005)

    Article  Google Scholar 

  10. Alonso, L., Arce, A., Francisco, M., Rodriguez, O., Soto, A. (Liquid + liquid) equilibria of [C8mim][NTf2] ionic liquid with a sulfur-component and hydrocarbons. J. Chem. Thermodyn. 40, 265–270 (2008)

    Article  Google Scholar 

  11. Alonso, L., Arce, A., Francisco, M., Rodriguez, O., Soto, A.: Measurement and Correlation of Liquid-Liquid Equilibria of Two Imidazolium Ionic Liquids with Thiophene and Methylcyclohexane. J. Chem. Eng. Data. 52, 2409–2412 (2007)

    Article  Google Scholar 

  12. Alonso, L., Arce, A., Francisco, M., Rodriguez, O., Soto, A.: Liquid-Liquid Equilibria for Systems Composed by 1-Methyl-3-octylimidazolium Tetrafluoroborate Ionic Liquid, Thiophene, and n-Hexane or Cyclohexane. J. Chem. Eng. Data 52, 1729–1732 (2007)

    Article  Google Scholar 

  13. Alonso, L., Arce, A., Francisco, M., Rodriguez, O., Soto, A.: Gasoline Desulfurization using Extraction with [C8min][BF4] Ionic Liquid. AIChE J. 53, 3108–3115 (2007)

    Article  Google Scholar 

  14. Alonso, L., Arce, A., Francisco, M., Soto, A.: Solvent extraction of thiophene from n-alkanes (C7, C12 and C16) using the ionic liquid [C8mim][BF4]. J. Chem.Thermodyn. 40, 966–972 (2008)

    Article  Google Scholar 

  15. Alonso, L., Arce, A., Francisco, M., Soto, A.: Phase behaviour of 1-methyl-3-octylimidazolium bis[trifluoromethylsulfonyl] imide with thiophene and aliphatic hydrocarbons: The influence of n-alkane chain length. Fluid Phase Equilib. 263, 176–181 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, S.P., Anantharaj, R., Banerjee, T. (2010). UNIFAC Group Interaction Prediction for Ionic Liquid-Thiophene Based Systems Using Genetic Algorithm. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics