Skip to main content

The Optimization versus Survival Problem and Its Solution by an Evolutionary Multi Objective Algorithm

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

  • 2770 Accesses

Abstract

Altruism may be found in sets (groups of solutions). In such cases, it may occur that individual/individuals degrade their chances of survival (with sacrifice in the extreme) to ensure survival of fitter individuals. The idea of altruism within group evolution is posed here as a multi objective problem. The aspiration of a group to survive (find an optimal solution) is posed versus the individual’s aspiration to survive. In the paper, the problem is a trajectory planning problem with the dilemma producing a Pareto set for a decision maker to choose from. It is shown that if the decision maker is ready to forfeit some of the group members, optimality may be gained. Evolutionary multi objective algorithm is implemented in order to search for this optimal set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hamilton, W.D.: The Genetical Evolution of Social Behavior I and II. Journal of Theoretical Biology 7, 1–16, 17–32 (1964)

    Google Scholar 

  2. Darwin, C.: The Descent of Man and Selection in Relation to Sex. Appleton, New York (1871)

    Book  Google Scholar 

  3. West, S.A., Griffin, A.S., Gardner, A.: Social Semantics: Altruism, Cooperation, Mutualism, Strong Reciprocity and Group Selection. Journal of Evolutionary Biology 20, 415–432 (2007)

    Article  Google Scholar 

  4. Lehmann, L., Keller, L., West, S., Roze, D.: Group Selection and Kin Selections: Two Concepts but One Process’. Proceedings of the National Academy of the Sciences 104(16), 6736–6739 (2007)

    Article  Google Scholar 

  5. Sober, E.: Did Evolution Make us Psychological Egoists? In: His From A Biological Point of View. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  6. Coello, C.A.C.: Recent Trends in Evolutionary Multiobjective Optimization. In: Ajith, A., Jain, L., Robert, G. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 7–32. Springer, London (2005)

    Chapter  Google Scholar 

  7. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. Technical report 103, Computer Engineering and Networks Laberatory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (May 2001)

    Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.: Fast and elitist multiobjective genetic algorithm. NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Deb, K.: Multi-objective optimization using evolutionary algorithms. J. Wiley & Sons, Ltd., Chicester (2001)

    Google Scholar 

  10. Saravanan, R., Ramabalan, S., Balamurugan, C.: Evolutionary multi-criteria trajectory modeling of industrial robots in the Presence of obstacles. Engineering Applications of Artificial Intelligence 22, 329–342 (2009)

    Article  Google Scholar 

  11. Mittal, S., Deb, K.: Three-dimensional path planning for UAVs using multi-objective evolutionary algorithms. In: Proceedings of the Congress on Evolutionary Computation (CEC 2007), pp. 25–28 (September 2007)

    Google Scholar 

  12. Watanabe, K., Kiguchi, K., Izumi, K., Kunitake, Y.: Path planning for an omnidirectional mobile manipulator byevolutionary computation. In: Third International Conference Knowledge-Based Intelligent Information Engineering Systems, pp. 135–140 (1999)

    Google Scholar 

  13. Wei, J., Liu, J.: Collision free composite n3- splines generation for non-holonomic mobile robots by parallel variable length genetic algorithm. In: Int. Conference on Computational intelligence for Modeling control and Automation, CIMCA 2008, Vienna, Austria, December 10-12 (2008)

    Google Scholar 

  14. Lucidarme, P., Simonin, O., Liegeois, A.: Implementation and evaluation of a satisfaction/altruism based architecture for multi-robot systems. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1007–1012 (2002)

    Google Scholar 

  15. Simonin, O., Ferber, J.: Modeling self-satisfaction and altruism to handle action and reactive cooperation. In: SAB 2000 Proceedings, pp. 314–323 (2000)

    Google Scholar 

  16. Morton, R.D., Bekey, G.A., Clark, C.M.: Altruistic Task Allocation despite Unbalanced Relationships within Multi-Robot Communities. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, October 11-15 (2009)

    Google Scholar 

  17. Schrum, J., Miikkulainen, R.: Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference, Stanford, California, October 22–24. AAAI Press, California (2008)

    Google Scholar 

  18. Floreano, D., Mitri, S., Perez-Uribe, A., Keller, L.: Evolution of Altruistic Robots. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) Computational Intelligence: Research Frontiers. LNCS, vol. 5050, pp. 232–248. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avigad, G., Eisenstadt, E., Weiss, M. (2010). The Optimization versus Survival Problem and Its Solution by an Evolutionary Multi Objective Algorithm. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics