Skip to main content

A Many-Objective Optimisation Decision-Making Process Applied to Automotive Diesel Engine Calibration

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

Abstract

A novel process has been developed for reducing complexity in real-world, high-dimensional, multi-objective optimisation problems. This approach relies on being able to identify and exploit local harmony between objectives to reduce dimensionality. To achieve this, a systematic and modular process has been designed to cluster the Pareto-optimal front and apply a rule-based Principal Component Analysis including preference articulation for potential objective reduction. This many-objective optimisation decision-making process is demonstrated on a real-world, automotive diesel engine calibration optimisation problem comprising six objectives. The complexity reduction process resulted in three- and four-objective sub-problems. In the former, a significant improvement was achieved in one of the retained objectives at very little cost to the others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  2. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-Objective Optimization: An Engineering Design Perspective. In: Coello, C.A.C. (ed.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Lygoe, R.J.: Complexity Reduction in High-Dimensional Multi-Objective Optimisation. Ph.D. thesis, University of Sheffield, Sheffield, U.K (2010)

    Google Scholar 

  4. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Behavior of evolutionary many-objective optimization. In: UKSIM 2008, pp. 266–271 (2008)

    Google Scholar 

  5. Zou, X., Chen, Y., Liu, M., Kang, L.: A new evolutionary algorithm for solving many-objective optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B 38(5), 1402–1412 (2008)

    Article  Google Scholar 

  6. Deb, K., Saxena, D.K.: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: CEC 2006 (2006)

    Google Scholar 

  7. Purshouse, R.C., Fleming, P.J.: Conflict, harmony, and independence: Relationships in evolutionary multi-criterion optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Yoshikawa, T., Yamashiro, D., Furuhashi, T.: A Proposal of Visualization of Multi-Objective Pareto Solutions - Development of Mining Technique for Solutions. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM 2007), pp. 172–177. IEEE Press, Honolulu (2007)

    Chapter  Google Scholar 

  9. Müller, H., Biermann, D., Kersting, P., Michelitsch, T., Begau, C., Heuel, C., Joliet, R., Kolanski, J., Krller, M., Moritz, C., Niggemann, D., Stber, M., Stnner, T., Varwig, J., Zhai, D.: Intuitive Visualization and Interactive Analysis of Pareto Sets Applied on Production Engineering System. In: Yang, A., Shan, Y., Bui, L.T. (eds.) Success in Evolutionary Computation. SCI, vol. 92, pp. 189–214. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Cheung, Y.M.: k*-Means: A New Generalized k-Means Clustering Algorithm. Pattern Recognition Letters 24(15), 2883–2893 (2003)

    Article  MATH  Google Scholar 

  11. Rousseeuw, P., Van Driessen, K.: A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 41, 212–223 (1999)

    Article  Google Scholar 

  12. Carreira-Perpinan, M.A.: A Review of Dimension Reduction Techniques, Technical Report CS-96-09, Dept. of Computer Science, University of Sheffield (1997)

    Google Scholar 

  13. Fodor, I.K.: A survey of dimension reduction techniques, Technical report, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory (2002)

    Google Scholar 

  14. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  15. Hyvärinen, A.: Survey on Independent Component Analysis. Neural Computing Surveys 2, 94–128 (1999)

    Google Scholar 

  16. Morrison, A., Ross, G., Chalmers, M.: Fast Multidimensional Scaling through Sampling, Springs and Interpolation. Information Visualization 2(1), 68–77 (2003)

    Article  Google Scholar 

  17. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  18. Kambhatla, N., Leen, T.K.: Dimension reduction by local principal component analysis. Neural Computation 9(7), 1493–1516 (1997)

    Article  Google Scholar 

  19. Fonseca, C.M., Fleming, P.J.: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms — Part I: A Unified Formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 26–37 (1998)

    Article  Google Scholar 

  20. Adra, S., Griffin, I., Fleming, P.J.: A Comparative Study of Progressive Preference Articulation Techniques for Multiobjective Optimisation. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 908–921. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Adra, S., Dodd, T.J., Griffin, I.A., Fleming, P.J.: A Convergence Acceleration Operator for Multiobjective Optimisation. IEEE Transactions on Evolutionary Computation 13(4), 825–847 (2009)

    Article  MATH  Google Scholar 

  22. Filzmoser, P.: A multivariate outlier detection method. In: Seventh International Conference on Computer Data Analysis and Modeling, Minsk, Belarus, vol. 1, pp. 18–22 (2004)

    Google Scholar 

  23. Deb, K., Saxena, D.K.: On Finding Pareto-Optimal Solutions Through Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems, Technical Report 2005011, Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology, Kanpur, India (2005)

    Google Scholar 

  24. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lygoe, R.J., Cary, M., Fleming, P.J. (2010). A Many-Objective Optimisation Decision-Making Process Applied to Automotive Diesel Engine Calibration. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics