Skip to main content

Generating Sequential Space-Filling Designs Using Genetic Algorithms and Monte Carlo Methods

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

  • 2930 Accesses

Abstract

In this paper, the authors compare a Monte Carlo method and an optimization-based approach using genetic algorithms for sequentially generating space-filling experimental designs. It is shown that Monte Carlo methods perform better than genetic algorithms for this specific problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Dam, E.R., Husslage, B., den Hertog, D., Melissen, H.: Maximin latin hypercube design in two dimensions. Operations Research 55(1), 158–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gorissen, D., Crombecq, K., Hendrickx, W., Dhaene, T.: Adaptive distributed metamodeling. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 579–588. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Gorissen, D., Tommasi, L.D., Crombecq, K., Dhaene, T.: Sequential modeling of a low noise amplifier with neural networks and active learning. Neural Computation & Applications 18(5), 485–494 (2009)

    Article  Google Scholar 

  4. Gorissen, D., Turck, F.D., Dhaene, T.: Evolutionary model type selection for global surrogate modeling. Journal of Machine Learning Research 10(1), 2039–2078 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Johnson, M., Moore, L., Ylvisaker, D.: Minimax and maximin distance designs. Journal of Statistical Planning and Inference 26, 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  6. Joseph, V.R., Hung, Y.: Orthogonal-maximin latin hypercube designs. Statistica Sinica 18, 171–186 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Lehmensiek, R., Meyer, P., Müller, M.: Adaptive sampling applied to multivariate, multiple output rational interpolation models with application to microwave circuits. International Journal of RF and Microwave Computer-Aided Engineering 12(4), 332–340 (2002)

    Article  Google Scholar 

  8. Morris, M.D., Mitchell, T.J.: Exploratory designs for computer experiments. Journal of Statistical Planning and Inference 43, 381–402 (1995)

    Article  MATH  Google Scholar 

  9. Rennen, G., Husslage, B., Dam, E.V., Hertog, D.D.: Nested maximin latin hypercube designs. Tech. Rep., Tilburg University (2009)

    Google Scholar 

  10. Sugiyama, M.: Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research 7, 141–166 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Viana, F.A.C., Venter, G., Balabanov, V.: An algorithm for fast optimal latin hypercube design of experiments. International Journal for Numerical Methods in Engineering (2009)

    Google Scholar 

  12. Ye, K.Q., Li, W., Sidjianto, A.: Algorithmic construction of optimal symmetric latin hypercube designs. Journal of Statistical Planning and Inference 90(1), 145–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crombecq, K., Dhaene, T. (2010). Generating Sequential Space-Filling Designs Using Genetic Algorithms and Monte Carlo Methods. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics