

For further volumes:
http://www.springer.com/series/776

Monographs in Theoretical Computer Science
An EATCS Series

Editors: J. Hromkovič G. Rozenberg A. Salomaa
Founding Editors: W. Brauer G. Rozenberg A. Salomaa

On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board:
G. Ausiello M. Broy C.S. Calude A. Condon
D. Harel J. Hartmanis T. Henzinger T. Leighton
M. Nivat C. Papadimitriou D. Scott

http://www.springer.com/series/776

Donald Sannella • Andrzej Tarlecki

Foundations of Algebraic
Specification and Formal
Software Development

 pringer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
ch names are exempt from the relevant protective

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

© S

ISSN 1431-2654
ISBN 978-3-642-17335-6 e-ISBN 978-3-642-17336-3
DOI 10.1007/978-3-642-17336-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941495

ACM Codes: F.3, D.2

in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

imply, even in the absence of a specific statement, that su
laws and regulations and therefore free for general use.

United Kingdom

Series Editors
Prof. Dr. Juraj Hromkovi
ETH Zentrum
Department of Computer Science
Swiss Federal Institute of Technology
8092 Zürich, Switzerland

Prof. Dr. Grzegorz Rozenberg

Prof. Dr. Arto Salomaa

Leiden Institute of Advanced

Turku Centre of Computer Science

Computer Science

Lemminkäisenkatu 14 A

University of Leiden

20520 Turku, Finland

Niels Bohrweg 1
2333 CA Leiden, The Netherlands

The University of Edinburgh
School of Informatics
Informatics Forum

 Institute of Computer Science

Prof. Andrzej Tarlecki
Institute of Informatics
Faculty of Mathematics,

University of Warsaw
ul. Banacha 2
02-097 Warsaw, Poland
and

Polish Academy of Sciences
ul. Ordona 21
01-237 Warsaw, Poland

10 Crichton St.
Edinburgh, EH8 9AB

Prof. Donald Sannella

Informatics and Mechanics

http://www.springer.com

To Monika and Teresa

Preface

As its title promises, this book provides foundations for software specification and
formal software development from the perspective of work on algebraic specifica-
tion. It concentrates on developing basic concepts and studying their fundamental
properties rather than on demonstrating how these concepts may be used in the prac-
tice of software construction, which is a separate topic.

The foundations are built on a solid mathematical basis, using elements of uni-
versal algebra, category theory and logic. This mathematical toolbox provides a
convenient language for precisely formulating the concepts involved in software
specification and development. Once formally defined, these notions become sub-
ject to mathematical investigation in their own right. The interplay between mathe-
matics and software engineering yields results that are mathematically interesting,
conceptually revealing, and practically useful, as we try to show.

Some of the key questions that we address are: What is a specification? What
does a specification mean? When does a software system satisfy a specification?
When does a specification guarantee a property that it does not state explicitly? How
does one prove this? How are specifications structured? How does the structure of
specifications relate to the modular structure of software systems? When does one
specification correctly refine another specification? How does one prove correctness
of refinement steps? When can refinement steps be composed? What is the role of
information hiding? We offer answers that are simple, elegant and general while at
the same time reflecting software engineering principles.

The theory we present has its origins in work on algebraic specifications starting
in the early 1970s. We depart from and go far beyond this starting point in order to
overcome its limitations, retaining two prominent characteristics.

The first is the use of many-sorted algebras consisting of a collection of sets of
data values together with functions over those sets, or similar structures, as models
of software systems. This level of abstraction fits with the view that the correctness
of the input/output behaviour of a software system takes precedence over all its other
properties. Certain fundamental software engineering concepts, such as information
hiding, have direct counterparts on the level of such models.

vii

Preface

The second is the use of logical axioms, usually in a logical system in which
equality has a prominent role, to describe the properties that the functions are re-
quired to satisfy. This property-oriented approach allows the use of formal systems
of rules to reason about specifications and the relationship between specifications
and software systems. Still, the theory we present is semantics-oriented, regarding
models as representations of reality. The level of syntax and its manipulation, in-
cluding axioms and formal proof rules, merely provide convenient means of dealing
with properties of (classes of) such models.

Our primary source of software engineering intuition is the relatively simple
world of first-order functional programming, and in particular functional program-
ming with modules as in Standard ML. It is simpler than most other programming
paradigms, it offers the most straightforward fit with the kinds of models we use,
and it provides syntax (“functors”) that directly supports a methodology of software
development by stepwise refinement. Even though some aspects of more elaborate
programming paradigms are not directly reflected, the fundamental concepts we
study are universal and are relevant in such contexts as well.

This book contains five kinds of material.

The requisite mathematical underpinnings:
Chapters 1 and 3 are devoted to the basic concepts of universal algebra and cate-
gory theory, respectively. This material finds application in many different areas
of theoretical computer science and these chapters may be independently used
for teaching these subjects. Our aim is to provide a generally accessible sum-
mary rather than an expository introduction. We omit many standard concepts
and results that are not needed for our purposes and include refinements to clas-
sical universal algebra that are required for its use in modelling software. Most
of the proofs are left to the reader as exercises.

Traditional algebraic specifications:
Chapter 2 presents the standard material that forms the basis of work on algebraic
specifications. From the point of view of an algebraist, much of this would be
viewed as part of universal algebra. Additionally, Section 2.7 explores some of
the ways in which these basics may be modified to cope with different aspects
of software systems. Again, this chapter is a summary rather than an expository
introduction, and many proofs are omitted.

Elements of the theory of institutions:
In Chapter 4 we introduce the notion of an institution, developed as a formalisa-
tion of the concept of a logical system. This provides a suitable basis for a general
theory of formal software specification and development. Chapter 10 contains
some more advanced developments in the theory of institutions.

Formal specification and development:
Chapters 5–8 constitute the core of this book. Chapter 5 develops a theory of
specification in an arbitrary institution. Special attention is paid to the issue of
structure in specifications. Chapter 6 is devoted to the topic of parameterisation,
both of algebras and of specifications themselves. Chapter 7 presents a theory of
formal software development by stepwise refinement of specifications. Chapter 8

viii

Preface

introduces the concept of behavioural equivalence and studies its role in software
specification and development.

Proof methods:
Chapter 9 complements the model-theoretic picture from the previous chapters
by giving the corresponding proof methods, including calculi for proving conse-
quences of specifications and correctness of refinement steps.

The dependency between chapters and sections is more or less linear, except that
Chapter 10 does not depend on Chapter 9. This dependency is not at all strict. This
is particularly relevant to Chapter 3 on category theory: anyone who is familiar with
the concepts of category, functor and pushout may omit this chapter, returning to
it if necessary to follow some of the details of later chapters. On first reading one
may safely omit the following sections, which are peripheral to the main topic of the
book or contain particularly advanced or speculative material: 2.6, 2.7, 3.5 except
for 3.5.1, 4.1.2, 4.4.2, 4.5, 6.3, 6.4, 6.5, 8.2.3, 8.5.3, 9.5, 9.6 and Chapter 10.

This book is self-contained, although mathematical maturity and some acquain-
tance with the problems of software engineering would be an advantage. In the
mathematical material, we assume a very basic knowledge of set theory (set, mem-
bership, Cartesian product, function, etc. — see for instance [Hal70]), but we recall
all of the set-theoretic notation we use in Section 1.1. Likewise, we assume a basic
knowledge of the notation and concepts of first-order logic and proof calculi; see for
instance [End72]. In the examples that directly relate to programming, we assume
some acquaintance with simple concepts of functional programming. No advanced
features are used and so these examples should be self-explanatory to anyone with
experience using a programming language with types and recursion.

In an attempt to give a complete treatment of the topics covered without going on
at much greater length, quite a few important results are relegated to exercises with
the details left for the reader to fill in. Fairly detailed hints are provided in many
cases, and in the subsequent text there is no dependence on details of the solutions
that are not explicitly given in these hints.

This book is primarily a monograph, with researchers and advanced students as
its target audience. Even though it is not intended as a textbook, we have success-
fully used some parts of it for teaching, as follows:

Universal algebra and category theory:
A one-semester course based on Chapters 1 and 3.

Basic algebraic specifications:
A one-semester course for undergraduates based on Chapters 1 and 2.

Advanced algebraic specifications:
An advanced course that follows on from the one above based on Chapters 4–7.

Institutions:
A graduate course with follow-up seminar on abstract model theory based on
most of Chapter 4 and parts of Chapter 10.

The material in this book has roots in the work of the entire algebraic specifica-
tion community. The basis for the core chapters is our own research papers, which
are here expanded, unified and taken further. We attempt to indicate the origins of

ix

x Preface

the most important concepts and results, and to provide appropriate bibliographi-
cal references and pointers to further reading, in the final section of each chapter.
The literature on algebraic specification and related topics is vast, and we make no
claim of completeness. We apologize in advance for possible omissions and mis-
attributions.

Acknowledgements

All of this material has been used in some form in courses at the University of
Edinburgh, the University of Warsaw, and elsewhere, including summer schools and
industrially oriented training courses. We are grateful to all of our students in these
courses for their attention and feedback.

This book was written while we were employed by the University of Edinburgh,
the University of Warsaw, and the Institute of Computer Science of the Polish
Academy of Sciences. We are grateful to our colleagues there for numerous dis-
cussions and for the atmosphere and facilities which supported our work. The un-
derlying research and travel was partly supported by grants from the British Council,
the Committee for Scientific Research (Poland), the Engineering and Physical Sci-
ences Research Council (UK), the European Commission, the Ministry of Science
and Higher Education (Poland), the Scottish Informatics and Computer Science Al-
liance and the Wolfson Foundation.

We are grateful to the entire algebraic specification community, which has pro-
vided much intellectual stimulation and feedback over the years. We will not attempt
to list the numerous members of that community who have been particularly influ-
ential on our thinking, but we give special credit to our closest collaborators on
these topics, and in particular to Michel Bidoit, Till Mossakowski and Martin Wirs-
ing. Our Ph.D. students contributed to the development of our ideas on some of the
topics here, and we particularly acknowledge the contributions of David Aspinall,
Tomasz Borzyszkowski, Jordi Farrés-Casals and Wiesław Pawłowski.

We are grateful for discussion and helpful comments on the material in this book
and the research on which it is based. In addition to the people mentioned above, we
would like to acknowledge Jiři Adámek, Jorge Adriano Branco Aires, Thorsten Al-
tenkirch, Egidio Astesiano, Hubert Baumeister, Jan Bergstra, Pascal Bernard, Gilles
Bernot, Didier Bert, Julian Bradfield, Victoria Cengarle, Maura Cerioli, Rocco De
Nicola, Răzvan Diaconescu, Luis Dominguez, Hans-Dieter Ehrich, Hartmut Ehrig,
John Fitzgerald, Michael Fourman, Harald Ganzinger, Marie-Claude Gaudel, Leslie
Ann Goldberg, Joseph Goguen, Jo Erskine Hannay, Robert Harley, Bob Harper,
Rolf Hennicker, Claudio Hermida, Piotr Hoffman, Martin Hofmann, Furio Honsell,
Cliff Jones, Jan Jürjens, Shin-ya Katsumata, Ed Kazmierczak, Yoshiki Kinoshita,
Spyros Komninos, Bernd Krieg-Brückner, Sławomir Lasota, Jacek Leszczyłowski,
John Longley, David MacQueen, Tom Maibaum, Lambert Meertens, José Meseguer,
Robin Milner, Eugenio Moggi, Bernhard Möller, Brian Monahan, Peter Mosses,
Tobias Nipkow, Fernando Orejas, Marius Petria, Gordon Plotkin, Axel Poigné,

Preface xi

John Power, Horst Reichel, Grigore Roşu, David Rydeheard, Oliver Schoett, Lutz
Schröder, Douglas Smith, Stefan Sokołowski, Thomas Streicher, Eric Wagner, Lin-
coln Wallen and Marek Zawadowski. We apologize for any omissions. We are grate-
ful to Stefan Kahrs, Bartek Klin and Till Mossakowski for their thoughtful and de-
tailed comments on a nearly final version which led to many improvements, to Mihai
Codescu for helpfully checking examples for errors, to Ronan Nugent of Springer
and to Springer’s copyeditor.

Finally, we would like to express our very special appreciation to Rod Burstall
and Andrzej Blikle, our teachers, supervisors, and friends, who introduced us to this
exciting area, brought us to scientific maturity, and generously supported us in our
early careers.

Edinburgh and Warsaw, Don Sannella
September 2011 Andrzej Tarlecki

Contents

Preface .

0 Introduction . 1
0.1 Modelling software systems as algebras . 1
0.2 Specifications . 5
0.3 Software development . 8
0.4 Generality and abstraction . 10
0.5 Formality . 13
0.6 Outlook . 14

1 Universal algebra . 15
1.1 Many-sorted sets . 15
1.2 Signatures and algebras . 19
1.3 Homomorphisms and congruences . 22
1.4 Term algebras . 27
1.5 Changing signatures . 32

1.5.1 Signature morphisms . 33
1.5.2 Derived signature morphisms . 36

1.6 Bibliographical remarks . 38

2 Simple equational specifications . 41
2.1 Equations . 42
2.2 Flat specifications . 44
2.3 Theories . 49
2.4 Equational calculus . 53
2.5 Initial models . 57
2.6 Term rewriting . 65
2.7 Fiddling with the definitions . 71

2.7.1 Conditional equations . 72
2.7.2 Reachable semantics . 74
2.7.3 Dealing with partial functions: error algebras 78

xiii

vii

xiv Contents

2.7.4 Dealing with partial functions: partial algebras 83
2.7.5 Partial functions: order-sorted algebras 86
2.7.6 Other options . 90

2.8 Bibliographical remarks . 93

3 Category theory . 97
3.1 Introducing categories . 99

3.1.1 Categories . 99
3.1.2 Constructing categories . 105
3.1.3 Category-theoretic definitions . 109

3.2 Limits and colimits . 111
3.2.1 Initial and terminal objects . 112
3.2.2 Products and coproducts . 113
3.2.3 Equalisers and coequalisers . 115
3.2.4 Pullbacks and pushouts . 116
3.2.5 The general situation . 119

3.3 Factorisation systems . 123
3.4 Functors and natural transformations . 127

3.4.1 Functors . 128
3.4.2 Natural transformations . 135
3.4.3 Constructing categories, revisited . 139

3.5 Adjoints . 144
3.5.1 Free objects . 144
3.5.2 Left adjoints . 145
3.5.3 Adjunctions . 150

3.6 Bibliographical remarks . 152

4 Working within an arbitrary logical system . 155
4.1 Institutions . 158

4.1.1 Examples of institutions . 161
4.1.2 Constructing institutions . 180

4.2 Flat specifications in an arbitrary institution . 187
4.3 Constraints . 194
4.4 Exact institutions . 198

4.4.1 Abstract model theory . 205
4.4.2 Free variables and quantification . 209

4.5 Institutions with reachability structure . 213
4.5.1 The method of diagrams . 216
4.5.2 Abstract algebraic institutions . 218
4.5.3 Liberal abstract algebraic institutions . 219
4.5.4 Characterising abstract algebraic institutions that admit

reachable initial models . 221
4.6 Bibliographical remarks . 223

Contents xv

5 Structured specifications . 229
5.1 Specification-building operations . 230
5.2 Towards specification languages . 237
5.3 An example . 241
5.4 A property-oriented semantics of specifications 245
5.5 The category of specifications . 249
5.6 Algebraic laws for structured specifications . 253
5.7 Bibliographical remarks . 257

6 Parameterisation . 259
6.1 Modelling generic modules . 260
6.2 Specifying generic modules . 270
6.3 Parameterised specifications . 276
6.4 Higher-order parameterisation . 280
6.5 An example . 287
6.6 Bibliographical remarks . 290

7 Formal program development . 293
7.1 Simple implementations . 294
7.2 Constructor implementations . 302
7.3 Modular decomposition . 309
7.4 Example . 316
7.5 Bibliographical remarks . 322

8 Behavioural specifications . 325
8.1 Motivating example . 326
8.2 Behavioural equivalence and abstraction . 329

8.2.1 Behavioural equivalence . 330
8.2.2 Behavioural abstraction . 335
8.2.3 Weak behavioural equivalence . 337

8.3 Behavioural satisfaction . 340
8.3.1 Behavioural satisfaction vs. behavioural abstraction 343

8.4 Behavioural implementations . 348
8.4.1 Implementing specifications up to behavioural equivalence 348
8.4.2 Stepwise development and stability . 350
8.4.3 Stable and behaviourally trivial constructors 352
8.4.4 Global stability and behavioural correctness 357
8.4.5 Summary . 365

8.5 To partial algebras and beyond . 366
8.5.1 Behavioural specifications in FPL . 366
8.5.2 A larger example . 373
8.5.3 Behavioural specifications in an arbitrary institution 384

8.6 Bibliographical remarks . 396

. . . .

xvi Contents

9 Proofs for specifications . 401
9.1 Entailment systems . 402
9.2 Proof in structured specifications . 415
9.3 Entailment between specifications . 429
9.4 Correctness of constructor implementations . 438
9.5 Proof and parameterisation . 443
9.6 Proving behavioural properties . 453

9.6.1 Behavioural consequence . 454
9.6.2 Behavioural consequence for specifications 465
9.6.3 Behavioural consequence between specifications 469
9.6.4 Correctness of behavioural implementations 473
9.6.5 A larger example, revisited . 475

9.7 Bibliographical remarks . 482

10 Working with multiple logical systems . 485
10.1 Moving specifications between institutions . 486

10.1.1 Institution semi-morphisms . 487
10.1.2 Duplex institutions . 491
10.1.3 Migrating specifications . 493

10.2 Institution morphisms . 501
10.3 The category of institutions . 511
10.4 Institution comorphisms . 518
10.5 Bibliographical remarks . 530

Bibliography . 533

Index of categories and functors . 553

Index of institutions . 555

Index of notation . 557

Index of concepts . 563

Introduction

Software is everywhere and affects nearly all aspects of daily life. Software systems
range in size from tiny (for instance, embedded software in simple devices, or the
solution to a student’s first programming exercise) to enormous (for instance, the
World Wide Web, regarded as a single distributed system). The quality of software
systems is highly variable, and everybody has suffered to some extent as a conse-
quence of imperfect software.

This book is about one approach, called algebraic specification, to understanding
and improving certain aspects of software quality. Algebraic specification is one of a
collection of so-called formal methods which use ideas from logic and mathematics
to model, analyse, design, construct and improve software. It provides means for
precisely defining the problem to be solved and for ensuring the correctness of a
constructed solution. The purpose of this book is to provide mathematically well-
developed foundations for various aspects of this activity.

The material presented here is sufficient to support the entirely formal develop-
ment of modular software systems from specifications of their required behaviour,
with proofs of correctness of individual steps in the development ensuring correct-
ness of the composed system. Although such a strict formal approach is infeasible
in practice for real software systems, it serves as a useful reference point for the
evaluation of less formal means for improving quality of software.

The following sections discuss some of the basic motivations which underlie this
approach to formal software specification and development.

0.1 Modelling software systems as algebras

In order to be useful for the intended purpose, a software system should satisfy a
wide range of requirements. For instance, it should be:

Efficient: The system should be tolerably efficient with respect to its usage of time,
memory, bandwidth and other resources.

1

2 0 Introduction

Robust: Small changes to the system should not dramatically affect its quality.
Reliable: The system should not break down under any circumstances. Incorrect

user input should be recognized and explicitly rejected, and faults in the system’s
environment should be dealt with in a reasonable fashion.

Secure: The system should be protected against unauthorized use. It should be pos-
sible to restore any data that is lost or corrupted by an attack, and confidential
data should be protected from disclosure.

User-friendly: The system should be easy to use, even without extensive prior
knowledge or experience with it.

Well documented: The system’s functionality, design and implementation should
all be appropriately documented.

All of these properties are very important, although in practice some of them may
be sacrificed, or even unachievable in absolute terms. But above all, the system must
be:

Correct: The system must exhibit the required externally visible input/output be-
haviour.

Of course, there are various degrees of correctness, and in practice large systems
contain bugs. In spite of this grim reality, it is clear that correctness — or at least, a
close approximation to correctness — is the primary goal, and this is the property
on which work on formal specification and development concentrates.

Software systems are complex objects. When we are interested in input/output
behaviour only, it is useful to abstract away from the concrete details of code and
algorithms and model software using mathematical functions, focussing solely on
the relationship between inputs and outputs.

For example, consider the following four function definitions:

fun f1(n) =
if n<=1 then 1 else f1(n-1)+f1(n-2)

fun f2(n) =
if n<=1 then 1
else let fun g(n) =

if n=1 then (1,1)
else let val (u,v) = g(n-1) in (u+v,u) end

in let val (u,v) = g(n-1) in u+v end
end

fun f3(n) =
if n<=1 then 1
else let val muv = ref (1,1,1)

in (while let val (m,u,v) = !muv in m < n end do
muv := let val (m,u,v) = !muv in (m+1,u+v,u) end;

let val (m,u,v) = !muv in u end)
end

public static nat f4(nat n) {
nat u = 1, v = 1;
for (nat m = 1; m < n; m++) {

0.1 Modelling software systems as algebras 3

u = u + v;
v = u - v;

}
return u;

}

Each of these definitions of the Fibonacci function over the set of natural numbers
N= {0,1,2, . . .} is different and has different properties. First of all, f1, f2, and f3
are in Standard ML while f4 is in Java; we ignore the fact that neither Standard ML
nor Java has a type of natural numbers. Next, f1 and f2 use recursion and are
purely functional while f3 and f4 are iterative and use assignment. The functions
f3 and f4 actually encode the same algorithm in two different notations, an iterative
version of the recursive algorithm that f2 encodes using a local auxiliary function
g. Also, f1 runs in time that is exponential in n while f2, f3 and f4 require only
linear time. However, the most important feature of these definitions is that they all
encode the Fibonacci function fib:N→ N defined in the usual way:

fib(0) = 1
fib(1) = 1

fib(n+2) = fib(n+1)+fib(n)

Before defining fib, it was natural to indicate that it takes elements of N as input
and delivers elements of N as output. We do not really want to consider fib in isola-
tion from the set of natural numbers; we view the four function definitions above as
defining the function fib over N, bundling data and function together:

N

�

�

�

�� �

� 	
�

fib

This simple example illustrates the way in which we will model every software
system as an algebra, that is, a set of data together with a number of functions
over this set.1 In order to deal with systems that manipulate several kinds or sorts
of data it is necessary to use so-called many-sorted or heterogeneous algebras that
contain a number of different sets of data (rather than just a single set) with functions
between these sets. Functions and data types that are defined and used in a software

1 By software system we mean a collection of type definitions and function definitions in a language
like C or Standard ML. A software system in the sense of a traditional imperative language is a
software system in this sense together with a sequence of statements (the main function, in C)
making reference to the defined types and functions; these are not themselves made available to
the user. In object-oriented languages, a software system is a collection of objects; again, this may
be viewed as a software system in our sense since it essentially defines a family of types and
functions, the latter capturing the objects’ methods by taking the (global) state of the objects as an
additional argument and returning the updated global state as an additional result.

4 0 Introduction

system have names, such as f2, + and nat above. These names are used to refer
to components of the algebra in order to compute with them, to reason about them
and to build larger systems over them. The set of names associated with an algebra
is called its signature. The formal definitions of these concepts appear in Chapter 1.

Example 0.1.1 (Timetable). A teaching timetable for a university records an as-
signment of lecturers to courses and courses to rooms and time slots. Such a
timetable may be viewed as an algebra with the following sorts:

Course: Data elements of this sort represent courses offered by the university, e.g.
Medieval History.

Lecturer: Data elements of this sort represent lecturers working in the university,
e.g. Kowalski.

Timeslot: Data elements of this sort represent hours during the week, e.g. Thursday
9–10 am.

Room: Data elements of this sort represent lecture rooms in the university, e.g.
JCMB 3315.

The algebra includes functions for operating on this data, for example:

who-teaches:Course → Lecturer
For any course, this gives the lecturer who teaches it.

what-teaches:Lecturer×Timeslot → Course
For any lecturer and time slot, this gives the course taught by the lecturer at that
time.

where-teaches:Lecturer×Timeslot → Room
For any lecturer and time slot, this gives the room where the lecturer is at that
time.

We have been vague about the actual data elements; also there are more functions
than we have listed (e.g. salary:Lecturer→Nat, important for the university and the
lecturers but not for the timetable).

The functions what-teaches and where-teaches unrealistically require that every
lecturer teaches a course in every time slot. This problem may be resolved by adding
an element nothing to the set Course and an element nowhere to the set Room, and
adjusting some of the details below; see Sections 2.7.3–2.7.5 for much more on this
and other options.

Extending this timetable algebra to give timetable and registration information
for students as well would involve adding new sorts and new functions. The new
sorts would be:

Student: Data elements of this sort represent students enrolled in the university.
Bool: The two boolean values true and false.

The new functions would include:

enrolled:Student×Course → Bool
For any student and course, this states whether or not the student is enrolled in
that course.

0.2 Specifications 5

what-attends:Student×Timeslot → Course
For any student and time slot, this gives the course attended by the student at that
time.

where-attends:Student×Timeslot → Room
For any student and time slot, this gives the room where the student is supposed
to be at that time.

All of these functions assume a static, fixed timetable with an unchanging as-
signment of lecturers and students to courses and time slots. Adding functions that
change the timetable would require us to introduce a new sort Timetable having
all possible timetables as its data elements, with functions like enrol:Student×
Course× Timetable → Timetable, and then the functions above would take the
timetable as an additional argument. ��

0.2 Specifications

Any attempt to build a software system must begin with some description of the task
the system is supposed to perform. Such a description need not tightly constrain ev-
ery single aspect of the required system; for example, a result is often only required
up to a certain accuracy in numerical problems, the efficiency of a system is usually
constrained only to fall within certain limits, and details of input/output format may
often be left to the programmer. Another example is the description of the task to be
performed by a compiler: the compiler should generate correct code, but the exact
code to be generated is not prescribed. However loose, such a description charac-
terises which actual software systems would be acceptable for the intended purpose
and which would not be.

As discussed in the previous section, we concentrate on the functional behaviour
of software systems, modelling them as algebras. Hence, a description of a class of
systems amounts to a characterisation of a class of algebras. The term specification
is used to refer to a formal object, normally in textual form, that defines such a
class. It is natural to expect that every specification unambiguously defines both a
signature and a class of algebras over that signature, since part of the purpose of
the specification is to indicate the names of the types and functions to be provided.
In this indirect way, a specification describes a class of software systems that are
its acceptable realisations. These are the systems whose functional behaviour is
captured by one of the algebras in the class defined by the specification.

The standard way of describing a class of algebras is by listing the properties they
are to satisfy. Such properties may be expressed as sentences in some logical sys-
tem such as equational logic or first-order logic. These sentences are called axioms.
For any given algebra and axiom, the semantics of the logical system determines
whether the algebra satisfies the axiom or not. A set of axioms thus describes a class

6 0 Introduction

of algebras, namely the class of all algebras that satisfy all the axioms in that set.2

Work on algebraic specification, to which the material in this book belongs, is based
on these two fundamental principles: first, software systems may be modelled as
algebras; second, properties of algebras may be described using axioms. This style
of specification, which is covered in Chapter 2, naturally separates the issue of de-
scribing what the system is to do (given by the axioms) from that of describing how
those requirements are achieved (given by the algorithms and data structures in the
system).

Example 0.2.1 (Timetable, continued). Consider the project of assigning courses
to rooms and time slots in a university. This can be viewed as the task of construct-
ing an algebra like the one described in Example 0.1.1. The prerequisites for this are
complete lists of the courses, lecturers, time slots and rooms and information con-
cerning which lecturers are able to teach which courses. The latter may be expressed
using axioms such as:

who-teaches(Calculus) = Smith∨who-teaches(Calculus) = Kowalski

The main problem is to make sure that the assignment is done in such a way that no
conflicts arise. The signature given in Example 0.1.1 guarantees that lecturers are
not required to be in two places at once, since what-teaches and where-teaches are
functions, i.e. they map any tuple of inputs (lecturer and time slot, in this case) to
exactly one output (a course or a room respectively). However, we must ensure that:

1. No room is simultaneously occupied by two different courses.
2. Lecturers are sent to the courses they are assigned to teach.
3. All courses have time slots allocated to them.

These requirements are formally expressed by the following axioms:

1. ∀t:Timeslot,c,c′:Course•
where-teaches(who-teaches(c), t) = where-teaches(who-teaches(c′), t)⇒

c = c′
2. ∀l:Lecturer, t:Timeslot• who-teaches(what-teaches(l, t)) = l
3. ∀c:Course• ∃t:Timeslot• what-teaches(who-teaches(c), t) = c

Extending the problem to include timetable and registration information for stu-
dents as well involves adding new axioms expressing the consistency between lec-
turers’ and students’ schedules. That is:

4. Students are sent to the courses in which they are enrolled:
∀s:Student, t:Timeslot• enrolled(s,what-attends(s, t)) = true

5. Students are sent to each course they are enrolled for, each time it is taught:
∀s:Student, l:Lecturer, t:Timeslot•

enrolled(s,what-teaches(l, t)) = true ⇒
what-attends(s, t) = what-teaches(l, t)

2 The use of the two distinct terms “set” and “class” has a mathematical justification, to be dis-
cussed in Section 3.1.1.1.

0.2 Specifications 7

6. Students and lecturers are sent to the same place for the same course:
∀l:Lecturer,s:Student, t:Timeslot•

where-teaches(l, t) = where-attends(s, t)⇔
what-teaches(l, t) = what-attends(s, t) ��

The process of constructing such a specification is a subject in itself. Captur-
ing desired properties in the form of axioms is sometimes difficult, as is deciding
when a given set of axioms captures all of the desired properties. It follows that
specifications can contain bugs, just as software systems can, and correctness of a
system with respect to a specification is a matter of consistency between two inde-
pendent definitions, either or both of which may contain errors. But once a set of
axioms has been written down, theorem proving tools can be used to validate them
by exploring their consequences, with unexpected consequences or lack of expected
consequences triggering a revision of the axioms.

Up to now the discussion has concentrated on describing the requirements that
a software system is to fulfill. A specification of this kind plays the role of a con-
tract between a client (the customer) and the programmer (or programming team)
responsible for building the system. On one hand, this contract records the features
that the programmer has to ensure. On the other hand, it records the features of the
system on which the client may rely. It is important that this contract be exhaustive
in the sense that it record all the expected properties of the system; the programmer
is not required to provide any features that are not explicitly stated in the contract,
and the client should not rely on such features either. Any actual system will satisfy
properties that are not mentioned in the contract. For example, some release of a
compiler may happen to ensure that uninitialised variables are set to 0. But if this is
not stated in the language definition (which is the compiler specification) it would
be dangerous to rely on this feature since it may change in the next release of the
compiler.

It is commonly accepted that large systems should be organized into modules
that encapsulate logically coherent units. Such units may be modelled as algebras
in exactly the same way as discussed above for complete systems. Specifications
are required here as well to describe the interfaces between modules. These spec-
ifications constrain the programmer responsible for implementing each module to
providing the required features in the same way as the specification of the overall
system constrains the programming team as a whole. The clients here are other mod-
ules in the system, which may use data and/or functions that this module supplies.

As before, it is important that the interface specification record all the expected
properties of the module. This means that programmers responsible for other mod-
ules are not allowed to take advantage of accidental features of modules on which
they rely. Thus interface specifications serve two main purposes. First, they provide
a means of communication between a module implementor and the outside world.
At the same time, they serve to prevent undesirable communication by defining ex-
actly those details on which others are allowed to depend, thus abstracting away
from the internal details of the module implementation. A special form of such in-

8 0 Introduction

formation hiding, supported by modern programming languages like Standard ML
and Java, is data abstraction, where the exact representation of data is kept hidden.3

If this discipline is strictly adhered to, then programmers are free to change in-
ternal details of their module implementations without restriction, provided that the
module interface specification is still satisfied. Another practical advantage of care-
fully specifying module interfaces is that these specifications provide the documen-
tation necessary to support the reuse of modules in the construction of other systems.

The problems of scale which led to the introduction of modular structuring of
large software systems affect large specifications as well. The specification of a
large system involves thousands of properties that the system is required to satisfy.
If these properties are simply listed one by one in the form of axioms, the specifi-
cation would be completely unmanageable: it would be difficult to construct, and
nearly impossible to understand and use. It is even a non-trivial task to understand
the relatively short list of axioms in Example 0.2.1 and ensure that all the desired
properties are included. The remedy to this problem is to structure such specifica-
tions into units of logically related properties which are then combined to build more
complex specifications. In the example the list of axioms has been divided into two
groups of related axioms to ease understanding. Mechanisms for structuring speci-
fications are covered in Chapter 5.

The structure of a specification is not just a superficial feature of its presenta-
tion. It is important not only for understanding specifications but also for all aspects
of their use. For example, in proving that certain additional properties are conse-
quences of those explicitly stated in the specification, the structure of the specifi-
cation may be exploited in guiding the search for a proof. Similarly, the structure
of the specification of a software system may play a useful role in the way that the
system is decomposed into modules.

0.3 Software development

As discussed above, and according to the traditional waterfall model of the soft-
ware life cycle, the specification of a system is the starting point for its subsequent
development. Once the specification of a software system is agreed on, the program-
mer is committed to building a system exhibiting a behaviour that conforms to that
required by the specification. The usual way to proceed is to construct the system
by whatever means are available, making informal reference to the specification in
the process, and then verifying in some way that the result does indeed realise the
specification. Other life cycle models take a different view, but in those that do not
reject the need for specifications outright, the role of the specification as the defi-
nition of correct system behaviour remains, along with the need for verification. In

3 In Standard ML, data abstraction is achieved using opaque signature ascription. The term “data
abstraction” tends to be avoided in Java, but interfaces and access modifiers provide the required
support.

0.3 Software development 9

the so-called V-model, the specification has an additional role, that of providing an
abstract view of the final implemented system.

The most widespread verification method is testing, which checks that in cer-
tain selected cases the behaviour exhibited by the system satisfies the constraints
imposed by the specification. Testing a system built to satisfy the timetable specifi-
cation of Example 0.2.1 would involve checking whether the axioms hold for chosen
values of variables. For instance, one might check that the axiom

∀l:Lecturer, t:Timeslot• who-teaches(what-teaches(l, t)) = l

holds for l = Kowalski and t = Thursday 9–10 am. This has the disadvantage that
correctness can be ensured in this fashion only when the system operates on a fixed
and finite set of data and exhaustive testing of all combinations is carried out. Model
checking is one way of rapidly conducting such exhaustive testing.

An alternative to testing is to provide a formal proof that the system is correct
with respect to the specification. For the timetable example this would amount to
proving that the system satisfies the axioms listed above. However, after many years
of work on software verification it now seems to be more or less widely accepted
that full proofs of correctness will probably never be feasible for systems of realistic
size. On the other hand, proofs of selected properties of critical parts of important
systems are done by some software developers.

From a practical point of view, the main ground for pessimism is the huge gap
between the high-level specification of requirements and the low-level details of the
realisation, including the specific data representation and algorithms used and the
coding of these in a particular programming language. The fact that transparency
and readability are usually sacrificed for the sake of efficiency makes the gap even
wider.

This leads to the idea that software systems should be developed from specifi-
cations in such a way that the result is guaranteed to be correct by construction.
The approach we follow here is to develop a system from its specification via a se-
ries of small refinement steps, inspired by the programming discipline of stepwise
refinement. Each refinement step captures a single design decision, for instance a
choice between several functions that satisfy the specification, between several al-
gorithms that implement the same function, or between several ways of efficiently
representing a given data type. If each of these individual refinement steps can be
proved correct then the resulting system is guaranteed to satisfy the original speci-
fication. Each of these proofs is orders of magnitude easier than a correctness proof
for the resulting system since each refinement step is small. In principle it would
be possible to combine all the individual correctness proofs to yield a proof of the
correctness of the system with respect to the specification, but in practice this would
never be necessary. Formal development of systems from specifications is covered
in Chapters 7 and 8.

Even if we consider the very simple problem of developing a software system
that realises the specification given in Example 0.2.1 (disregarding the extension to
handle students), it is difficult and unnatural to come up with the definitions of all
three functions simultaneously. One would tend to define them one after another,

10 0 Introduction

perhaps starting with the decision of which lecturer will teach which course, then
assigning time slots to the courses, and finally arranging rooms for courses. The
definition of each of these functions constrains the choices available at subsequent
steps since the axioms in the specification impose certain compatibility properties.

This methodology does not prevent us from making bad design decisions. For
example, for some choices of who-teaches and what-teaches there may be no way
to define where-teaches such that the specification is satisfied because of limitations
on the number of rooms. This means that backtracking may be necessary during
software development.

In the course of refining a large specification it will be necessary to decompose it
into appropriately chosen smaller units. The refinement of these units may proceed
separately, possibly involving further decomposition. This will result in a collection
of modules that can be combined to yield a correct software system. Decomposition
and refinement steps may be freely interleaved during the development process.

Once a system has been built in this fashion, the development history which in-
cludes all of the intermediate specifications (and possibly even the proofs of correct-
ness) constitutes very complete design documentation. This facilitates later mainte-
nance of the system. Even if the original specification is changed in the course of
maintenance, it is normally possible to use this documentation to trace which parts
of the system this change affects, localizing the fragment of the system that must be
changed.

The rosy picture painted above neglects the fact that all stages of the software de-
velopment process are arduous and error-prone. Coming up with a formal specifica-
tion that accurately reflects all the vague and informal requirements of the customer
is difficult; ideas for refinement steps are hard to come by and their formalisation is
often a struggle as well; an advantageous decomposition of the problem is often dif-
ficult to find; and proofs of correctness are laborious. This leaves a lot of scope for
the skill of designers and programmers. The scale of the formal objects involved and
the need for meticulous accuracy and attention to detail make these creative tasks
infeasible for humans to perform with pencil and paper. Many of these problems
may be resolved through the use of computer-based tools to support the software
development process. The most obvious candidates for this are mechanical theo-
rem provers and proof checkers as well as some means of keeping track of all the
different bits, how they interrelate and what remains to be done.

0.4 Generality and abstraction

The motivation for focussing on the functional behaviour of software systems and
abstracting away from the concrete details of code and algorithms was discussed in
Section 0.1. This led to the decision to model software systems as algebras. There
are, however, many important aspects of the functional behaviour of systems that
are not captured by this model, for example:

0.4 Generality and abstraction 11

Non-termination: Systems do not always terminate on all inputs. The functional
behaviour of such a system does not directly determine a (total) function.

Exceptions: Some operations fail on certain inputs, yielding an exceptional result
or an error message. Although such results may be viewed as data values, they
must be distinguished in some way. This is not accommodated by the standard
definition of an algebra.

Input/output: Systems may interact with their environment during execution and
this interaction is part of the functional behaviour of the system. The fact that
input and output may be interleaved means that ordinary functions do not accu-
rately model such systems.

Such aspects of systems, and their combinations (for example in reactive sys-
tems, which are designed to run forever and to react to input stimuli), are modelled
by changing the notion of algebra (e.g. using so-called coalgebras to model reactive
systems). Often only relatively minor enrichments are required. For instance par-
tial algebras, where functions may be undefined on some arguments, can be used to
model non-termination. Such adjustments are also necessary if we want to handle
all of the relevant concepts that are present in programming languages, such as poly-
morphism, higher-order functions, lazy evaluation, imperative features, concurrency
and mobility. Some of these elaborations are discussed in Section 2.7.

Moreover, each of these aspects of behaviour can be specified in different ways.
This amounts to a choice between alternative logical systems for writing the axioms
in specifications. As a very simple example, for specifying partial algebras using
equational axioms there are two standard choices: strong equality with definedness
formulae, or existential equality (see Section 2.7.4). Coalgebras can be specified
using different modal logics. Even for ordinary algebras, there is a choice of whether
to use purely equational axioms or full first-order or even higher-order logic, with
trade-offs between expressive power and ease of reasoning.

There are at least three ways to proceed with the formation of a theory of soft-
ware specification and development given these complications. The first is to start
by devising a notion of algebra that accommodates all of the aspects of system be-
haviour and all relevant concepts of programming languages we can think of, with
a logic for writing axioms that is rich enough to conveniently specify all of these
aspects of behaviour in all of their combinations. Then we erect an appropriate the-
ory on top of this basis. One problem with this approach is that the whole strategy
breaks down when a new aspect of behaviour emerges or a new feature of program-
ming languages becomes popular. For example, we would have to start again from
scratch if we had not taken concurrency into account and it became necessary to add
this later. Another problem is that the huge variety of features that would have to be
considered would make the basic concepts of the theory very complicated indeed.
This would yield an unwieldy theory in which one would be unable to see the forest
for the trees.

Another possibility is to consider each target programming language separately
and design a notion of algebra appropriate for modelling software systems built us-
ing just the particular features of this language, with an appropriate choice of logical
notation for writing axioms. This has the obvious disadvantage that we must start

12 0 Introduction

afresh for each programming language we consider, or even for different dialects of
the same language.

Many aspects of the theory of system specification and development actually turn
out to be independent of the particular details of the notion of algebra and the logi-
cal system used. This is illustrated by the fact that if we erect a complete theory for
several different programming languages as described above, we will find ourselves
repeating the same work time after time with only relatively minor modifications.
Thus a third possibility is to develop a generic theory which is parameterised by the
notion of algebra to be used and the definition of what it means for an algebra to
satisfy an axiom. Given a particular choice of the notion of algebra, the theory can
simply be instantiated to adapt it to that choice. Analogously, it is possible to param-
eterise the theory by the notion of axiom, which enables the use of different logical
systems in writing specifications, and by the notion of signature to accommodate
different type systems.

This third approach is the one adopted in this book. The theory presented is
almost entirely independent of the particular aspects of functional behaviour of sys-
tems under consideration, of how these are described by axioms, and of the fea-
tures of the underlying type system. This general view leads to reusable concepts
and results and ultimately to reusable tools, which can be instantiated in particular
situations as required. The resulting uniform framework exposes the essential con-
cepts inherent in specification and development, and separates them from the sordid
details of specific situations. The foundations required to support this theory are
developed in Chapter 4 and then applied in subsequent chapters.

Working at this level of generality necessitates the use of mathematical tools that
are appropriate for formulating general definitions and proving general facts. The
language and concepts of category theory are convenient for dealing with the kind
of generality involved. The basic concepts of category theory that are required are
presented in Chapter 3.

Despite the advantages of generality, it is necessary to examine specific instantia-
tions for the purposes of both presentation and motivation. Achieving understanding
requires examination of concrete situations and examples, and these in turn demon-
strate the need for developments in the general theory. Much of the time it will be
sufficient to consider the simple situation in which systems are modelled as “stan-
dard” algebras, ignoring their inadequacy for the aspects of systems mentioned
above, with axioms written using equations and sometimes propositional connec-
tives and first-order quantifiers. This is the situation that is treated in Chapters 1
and 2. Examples that are meant to appeal to the reader’s programming intuition
are sprinkled throughout the later chapters, using an instantiation of the emerg-
ing theory to a context that is akin to a purely functional first-order subset of the
Standard ML programming language, based on definitions and notations in Exam-
ples 4.1.25 and 6.1.9 and Exercise 7.3.5.

0.5 Formality 13

0.5 Formality

Algebraic specification as it is presented here is close to the “hard-core”, uncom-
promising end of the spectrum of existing work on formal methods. Indeed, one
of its advantages over competing approaches is that it has complete mathematical
foundations. Thus, a claim of correctness of a software system or component with
respect to a precise algebraic specification of the problem, when backed with all
the relevant formal proofs, amounts to a complete justification without reliance on
informal reasoning, guesswork or crossed fingers.

Of course, software is almost never developed in this way in practice. One rea-
son is that 100% confidence in correctness is hardly ever necessary, and achieving it
involves an enormous amount of hard work. Furthermore, experience suggests that
failure of a proof of correctness is often the result of an error in the specification
itself. Achieving confidence that the original specification of a problem spells out
what is actually required will generally involve human interaction and other pro-
cesses that are necessarily informal and error-prone.

In practice, shortcuts are normal and formal proofs are rarely attempted. Even
when they are attempted, proofs are often sketched informally to a level of detail
that is sufficient to check the main points of importance rather than done in full de-
tail to completion using a proof assistant. Such a mode of use of formal methods
is referred to as rigorous methods. Sometimes certain critical components of a sys-
tem, or certain important properties, will be selected for special attention. Such a
component might be one containing a complicated and important algorithm, or one
that protects the system from catastrophic failure. An important property might be
exception freedom or freedom from deadlock, or a security property. The degree of
confidence that is justified in the outcome depends on an appropriate choice of the
components and/or properties of greatest importance, and the care that is taken with
informal or incomplete proofs. The above points notwithstanding, the power and
sophistication of automated theorem proving tools and the computing power avail-
able to engineers have increased over time to the point where it is becoming feasible
to formally verify whole systems or components of systems, and such proofs are
increasingly being done in practice, especially for hardware.

From this point of view, the material in this book may be seen as providing a
reference point for less formal means of improving quality of software, including
rigorous methods. Another approach that puts major emphasis on the trade-off be-
tween practical benefits achieved and effort required is called lightweight formal
methods. Here, some of the techniques of formal methods are used to improve the
quality of software via early detection and removal of errors, without any expecta-
tion that they can be entirely eliminated. Lightweight formal methods rely on the
use of automated analysis tools to provide cost-effective programming support.

In this book we will not explicitly point out opportunities for relaxing formal-
ity, and to a large extent that is a matter of engineering judgement in particular
circumstances. Neither will we discuss to what extent the material presented pro-
vides opportunities for the provision of useful automated analyses. In general we do
not provide algorithms or present decidability or complexity results for the decision

14 0 Introduction

problems discussed. There is a clear trade-off between expressibility of notations on
the one hand and ease of automation on the other; our approach here is firmly on the
side of expressibility, with compromises in favour of automation left as a separate
(but practically important) issue.

0.6 Outlook

In the previous sections we have outlined the motivations that underlie the algebraic
approach to specification and formal software development. We have also discussed
the need for a general approach that abstracts away from specific aspects of software
systems.

This book presents mathematical foundations for algebraic specification and soft-
ware development that support these practically motivated ideas. It concentrates on
developing basic concepts and studying their fundamental properties rather than on
demonstrating how these concepts may be used in the practice of software construc-
tion, which is a separate topic. This provides the necessary foundation for further
work towards practical software production, on at least the following levels:

• More user-oriented notations and theories could be developed on top of the rudi-
ments presented here. For example, high-level user-friendly specification lan-
guages could be defined, based on the primitive operations presented in Chap-
ter 5.

• A computationally tractable and practically useful subset of the notations and
concepts presented here could be selected and used in the style of lightweight
formal methods as discussed above.

• Tools, techniques, hints and heuristics could be developed to support and guide
the user’s specification and development activity.

All of these aspects are beyond the scope of this book, and we deliberately avoid
dealing with problems arising at these levels here. In particular we do not present
“how-to” guidelines for building specifications or for validating them against real-
life requirements, or for coming up with design decisions in software development.
Some of the more substantial examples provide some hints in this direction.

The CASL specification language ([BM04], [Mos04]) is an attempt at a user-
friendly specification notation, underpinned by many of the ideas presented here,
with methodological guidelines for use of the features it provides. The material in
this book and languages like CASL are not the end of the story, and they do not by
any means solve all of the problems encountered in engineering practical software
systems. But they do provide a solid basis for coming to grips with some of the key
technical problems in software development.

	Foundations of Algebraic Specification and Formal Software Development
	Preface
	Contents
	Introduction
	0.1 Modelling software systems as algebras
	0.2 Specifications
	0.3 Software development
	0.4 Generality and abstraction
	0.5 Formality
	0.6 Outlook

