Skip to main content

Modeling Contact Friction and Joint Friction in Dynamic Robotic Simulation Using the Principle of Maximum Dissipation

  • Chapter
Algorithmic Foundations of Robotics IX

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 68))

Abstract

We present a unified treatment for modeling Coulomb and viscous friction within multi-rigid body simulation using the principle of maximum dissipation. This principle is used to build two different methods—an event-driven impulse-based method and a time stepping method—for modeling contact. The same principle is used to effect joint friction in articulated mechanisms. Experiments show that the contact models are able to be solved faster and more robustly than alternative models. Experiments on the joint friction model show that it is as accurate as a standard model while permitting much larger simulation step sizes to be employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anitescu, M.: Optimization-based simulation of nonsmooth dynamics. Mathematical Programming, Series A 105, 113–143 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anitescu, M., Cremer, J., Potra, F.: Properties of complementarity formulations for contact problems with friction. In: Ferris, M., Pang, J.-S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 12–21. SIAM, Philadelphia (1997)

    Google Scholar 

  3. Anitescu, M., Hart, G.: A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contacts, and friction. Intl. J. for Numerical Methods in Eng. 60(14), 2335–2371 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anitescu, M., Potra, F.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anitescu, M., Potra, F.: A time-stepping method for stiff multi-rigid-body dynamics with contact and friction. Intl. J. for Numerical Methods in Eng. 55, 753–784 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Anitescu, M., Potra, F., Stewart, D.: Time-stepping for three dimensional rigid body dynamics. Computer Methods in Applied Mechanics and Eng. 177, 183–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Computational Optimization and Applications (2008)

    Google Scholar 

  8. Baraff, D.: Coping with friction for non-penetrating rigid body simulation. Computer Graphics 25(4), 31–40 (1991)

    Article  Google Scholar 

  9. Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: Proc. of SIGGRAPH, Orlando, FL (1994)

    Google Scholar 

  10. Baraff, D.: An introduction to physically based modeling: Rigid body simulation II – constrained rigid body dynamics. Technical report, Robotics Institute, Carnegie Mellon University (1997)

    Google Scholar 

  11. Brogliato, B.: Nonsmooth Impact Mechanics: Models, Dynamics, and Control. Springer, London (1996)

    MATH  Google Scholar 

  12. Brogliato, B., ten Dam, A.A., Paoli, L., Génot, F., Abadie, M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. ASME Appl. Mech. Reviews 55(2), 107–150 (2002)

    Article  Google Scholar 

  13. Ceanga, V., Hurmuzlu, Y.: A new look at an old problem: Newton’s cradle. ASME J. Appl. Mech. 68, 575–583 (2001)

    Article  MATH  Google Scholar 

  14. Chatterjee, A.: On the realism of complementarity conditions in rigid-body collisions. Nonlinear Dyn. 20, 159–168 (1999)

    Article  MATH  Google Scholar 

  15. Cottle, R., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  16. Drumwright, E.: Avoiding Zeno’s paradox in impulse-based rigid body simulation. In: Proc. of IEEE Intl. Conf. on Robotics and Automation (ICRA), Anchorage, AK (2010)

    Google Scholar 

  17. Drumwright, E., Shell, D.: A robust and tractable contact model for dynamic robotic simulation. In: Proc. of ACM Symp. on Applied Computing (SAC) (2009)

    Google Scholar 

  18. Erleben, K.: Velocity-based shock propagation for multibody dynamics animation. ACM Trans. on Graphics 26(12) (2007)

    Google Scholar 

  19. Fackler, P., Miranda, M.: Implementation of a modified lemke’s complementary pivoting algorithm (2002), http://people.sc.fsu.edu/~burkardt/m_src/lemke/lemke.m

  20. Featherstone, R.: Robot Dynamics Algorithms. Kluwer, Dordrecht (1987)

    Google Scholar 

  21. Ferris, M., Munson, T.: Complementarity problems in GAMS and the PATH solver. J. of Economic Dynamics and Control 24(2), 165–188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex rigid bodies with stacking. ACM Trans. on Graphics 22(3), 871–878 (2003)

    Article  Google Scholar 

  23. Kokkevis, E.: Practical physics for articulated characters. In: Proc. of Game Developers Conf. (2004)

    Google Scholar 

  24. Lacoursière, C.: Splitting methods for dry frictional contact problems in rigid multibody systems: Preliminary performance results. In: Ollila, M. (ed.) Proc. of SIGRAD, pp. 11–16 (2003)

    Google Scholar 

  25. Lemke, C.: Bimatrix equilibrium points and mathematical programming. Management Science 11, 681–689 (1965)

    Article  MathSciNet  Google Scholar 

  26. Löstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. on Applied Mathematics 42(2), 281–296 (1982)

    Article  Google Scholar 

  27. Löstedt, P.: Numerical simulation of time-dependent contact friction problems in rigid body mechanics. SIAM J. of Scientific Statistical Computing 5(2), 370–393 (1984)

    Article  Google Scholar 

  28. Miller, A., Christensen, H.: Implementation of multi-rigid-body dynamics within a robotic grasping simulator. In: Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 2262–2268 (2003)

    Google Scholar 

  29. Mirtich, B.: Fast and accurate computation of polyhedral mass properties. J. of Graphics Tools 1(2) (1996)

    Google Scholar 

  30. Mirtich, B.: Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis, University of California, Berkeley (1996)

    Google Scholar 

  31. Monteiro-Marques, M.: Differential inclusions in nonsmooth mechanical problems: Shocks and dry friction. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 9, Birkhäuser, Verlag (1993)

    Google Scholar 

  32. Moreau, J.: Standard inelastic shocks and the dynamics of unilateral constraints. In: Unilateral problems in structural analysis, pp. 173–221. Springer, New York (1983)

    Google Scholar 

  33. Moreau, J.: Standard inelastic shocks and the dynamics of unilateral constraints. In: C.I.S.M. Courses and Lectures, vol. 288, pp. 173–221. Springer, Vienna (1985)

    Google Scholar 

  34. Moreau, J.: Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth Mechanics and Applications, pp. 1–82. Springer, Heidelberg (1988)

    Google Scholar 

  35. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  36. Painlevé, P.: Sur le lois du frottement de glissemment. C. R. Académie des Sciences Paris 121, 112–115 (1895)

    Google Scholar 

  37. Petra, C., Gavrea, B., Anitescu, M., Potra, F.: A computational study of the use of an optimization-based method for simulating large multibody systems. In: Optimization Methods and Software (2009)

    Google Scholar 

  38. Pfeiffer, F., Glocker, C.: Dynamics of rigid body systems with unilateral constraints. John Wiley and Sons, Chichester (1996)

    Google Scholar 

  39. Potra, F., Anitescu, M., Gavrea, B., Trinkle, J.: A linearly implicit trapezoidal method for stiff multibody dynamics with contact, joints, and friction. Intl. J. for Numerical Methods in Eng. 66(7), 1079–1124 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Sauer, J., Schoemer, E., Lennerz, C.: Real-time rigid body simulations of some “classical mechanics toys”. In: Proc. of European Simulation Symposium and Exhibition, Nottingham, UK (1998)

    Google Scholar 

  41. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators, 2nd edn. Springer, London (2000)

    Google Scholar 

  42. Shabana, A.: Computational Dynamics, 2nd edn. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  43. Smith, R.: ODE: Open Dynamics Engine (2001), http://www.ode.org (Last access: July 2010)

  44. Stewart, D.: Rigid-body dynamics with friction and impact. SIAM Review 42(1), 3–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Stewart, D., Trinkle, J.: An implicit time-stepping scheme for rigid body dynamics with coulomb friction. In: Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), San Francisco, CA (2000)

    Google Scholar 

  46. Stoianovici, D., Hurmuzlu, Y.: A critical study of the applicability of rigid-body collision theory. ASME J. Appl. Mech. 63, 307–316 (1996)

    Article  Google Scholar 

  47. Tasora, A., Anitescu, M.: A convex complementarity approach for simulating large granular flow. J. of Computational Nonlinear Dynamics 5(3) (2010)

    Google Scholar 

  48. Tassa, Y., Todorov, E.: Stochastic complementarity for local control of continuous dynamics. In: Proc. of Robotics: Science and Systems (2010)

    Google Scholar 

  49. Todorov, E.: Implicit nonlinear complementarity: a new approach to contact dynamics. In: Proc. of Intl. Conf. on Robotics and Automation ICRA (2010)

    Google Scholar 

  50. Trinkle, J., Berard, S., Pang, J.S.: A time-stepping scheme for quasistatic multibody systems. In: Proc. of Intl. Symp. on Assembly and Task Planning, pp. 174–181 (2005)

    Google Scholar 

  51. Trinkle, J., Pang, J.-S., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with coulomb friction. Zeithscrift fur Angewandte Mathematik und Mechanik 77(4), 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drumwright, E., Shell, D.A. (2010). Modeling Contact Friction and Joint Friction in Dynamic Robotic Simulation Using the Principle of Maximum Dissipation. In: Hsu, D., Isler, V., Latombe, JC., Lin, M.C. (eds) Algorithmic Foundations of Robotics IX. Springer Tracts in Advanced Robotics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17452-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17452-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17451-3

  • Online ISBN: 978-3-642-17452-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics