Skip to main content

Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners

  • Chapter
Book cover Algorithmic Foundations of Robotics IX

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 68))

Abstract

Sampling-based motion planners are a central tool for solving motion-planning problems in a variety of domains, but the theoretical understanding of their behavior remains limited, in particular with respect to the quality of the paths they generate (in terms of path length, clearance, etc.). In this paper we prove, for a simple family of obstacle settings, that the popular dual-tree planner Bi-RRT may produce low-quality paths that are arbitrarily worse than optimal with modest but significant probability, and overlook higher-quality paths even when such paths are easy to produce. At the core of our analysis are probabilistic automata designed to reach an accepting state when a path of significantly low quality has been generated. Complementary experiments suggest that our theoretical bounds are conservative and could be further improved. To the best of our knowledge, this is the first work to study the attainability of high-quality paths that occupy a significant (non-negligible) portion of the space of all paths. The formalism presented in this work can be generalized to other algorithms and other motion-planning problems by defining appropriate predicates, and pave the way to deeper understanding of hallmark planning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, T., Kirkpatrick, D., Yap, C.: d 1-Optimal motion of a rod. In: 12th ACM Symposium on Computational Geometry, pp. 252–263 (1996)

    Google Scholar 

  2. Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with temporal goals. In: ICRA 2010, pp. 2689–2696 (2010)

    Google Scholar 

  3. Canny, J., Reif, J.: New lower bound techniques for robot motion planning problems. In: FOCS 1987, pp. 49–60. IEEE, Los Alamitos (1987)

    Google Scholar 

  4. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  5. Enosh, A., Raveh, B., Furman-Schueler, O., Halperin, D., Ben-Tal, N.: Generation, comparison and merging of pathways between protein conformations: Gating in k-channels. Biophysical Journal 95(8), 3850–3860 (2008)

    Article  Google Scholar 

  6. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ferguson, D., Stentz, A.: Anytime RRTs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5369–5375 (2006)

    Google Scholar 

  8. Geraerts, R., Overmars, M.: Creating high-quality paths for motion planning. IJRR 26(8), 845–863 (2007)

    Google Scholar 

  9. Hsu, D., Latombe, J., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comp. Geo. & App. 4, 495–512 (1999)

    Article  MathSciNet  Google Scholar 

  10. Karaman, S., Frazzoli, E.: Incremental sampling-based optimal motion planning. Robotics: Science and Systems (2010)

    Google Scholar 

  11. Kavraki, L.E., Kolountzakis, M.N., Latombe, J.-C.: Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Automat. 14(1), 166–171 (1998)

    Article  Google Scholar 

  12. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)

    Article  Google Scholar 

  13. Kim, J., Pearce, R.A., Amato, N.M.: Extracting optimal paths from roadmaps for motion planning. In: ICRA 2003, pp. 2424–2429. IEEE, Los Alamitos (2003)

    Google Scholar 

  14. Kuffner, J.J., Lavalle, S.M.: RRT-Connect: An efficient approach to single-query path planning. In: ICRA 2000, pp. 995–1001 (2000)

    Google Scholar 

  15. Lahijanian, M., Wasniewski, J., Andersson, S., Belta, C.: Motion planning and control from temporal logic specifications with probabilistic satisfaction guarantees. In: ICRA 2010, pp. 3227–3232 (2010)

    Google Scholar 

  16. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  17. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: Donald, B.R., Lynch, K.M., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. A K Peters, Wellesley (2001)

    Google Scholar 

  18. Mitchell, J.S.B.: Handbook of discrete and computational geometry. Shortest paths and networks, ch. 27, pp. 607–641. CRC Press, Inc., Boca Raton (2004)

    Google Scholar 

  19. Nechushtan, O., Raveh, B., Halperin, D.: Supplementary online proofs, http://acg.cs.tau.ac.il/projects/internal-projects/sda/SuppOnline.pdf

  20. Nieuwenhuisen, D., Overmars, M.H.: Useful cycles in probabilistic roadmap graphs. In: ICRA 2004, pp. 446–452. IEEE, Los Alamitos (2004)

    Google Scholar 

  21. Plaku, E., Bekris, K.E., Kavraki, L.E.: OOPS for motion planning: An online open-source programming system. In: ICRA 2007, pp. 3711–3716 (2007)

    Google Scholar 

  22. Raveh, B., Enosh, A., Halperin, D.: A little more, a lot better: Improving path quality by a simple path merging algorithm. Computing Research Repository, abs/1001.2391 (2010)

    Google Scholar 

  23. Reif, J., Wang, H.: The complexity of the two dimensional curvature-constrained shortest-path problem. In: WAFR 1998, pp. 49–57 (1998)

    Google Scholar 

  24. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Proceedings IEEE Symposium on Foundations of Computer Science, pp. 421–427 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nechushtan, O., Raveh, B., Halperin, D. (2010). Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners. In: Hsu, D., Isler, V., Latombe, JC., Lin, M.C. (eds) Algorithmic Foundations of Robotics IX. Springer Tracts in Advanced Robotics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17452-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17452-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17451-3

  • Online ISBN: 978-3-642-17452-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics