Abstract
Threshold cryptography increases security and resilience by sharing a private cryptographic key over different devices. Many personal devices, however, are not suited for threshold schemes, because they do not offer secure storage, which is needed to store shares of the private key. We present a solution that allows to include devices without them having to store their share. Shares are stored in protected form, possibly externally, which makes our solution suitable for low-cost devices with a factory-embedded key, e.g., car keys and access cards. By using pairings we achieve public verifiability in a wide range of protocols, which removes the need for private channels. We demonstrate how to modify existing discrete-log based threshold schemes to work in this setting. Our core result is a new publicly verifiable distributed key generation protocol that is provably secure against static adversaries and does not require all devices to be present.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, M., Fehr, S.: Adaptively secure Feldman VSS and applications to universally-composable threshold cryptography. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 317–334. Springer, Heidelberg (2004)
Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003)
Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–323. Springer, Heidelberg (1992)
Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Designs, Codes and Cryptography 35(1), 119–152 (2005)
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society, Los Alamitos (2001)
Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–115. Springer, Heidelberg (1999)
Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)
Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS 1987, pp. 427–437. IEEE Computer Society, Los Alamitos (1987)
Fouque, P.A., Stern, J.: One round threshold discrete-log key generation without private channels. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 300–316. Springer, Heidelberg (2001)
Frankel, Y., MacKenzie, P.D., Yung, M.: Adaptively-secure distributed public-key systems. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 4–27. Springer, Heidelberg (1999)
Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)
Galbraith, S., Hess, F., Vercauteren, F.: Aspects of pairing inversion. IEEE Transactions on Information Theory 54(12), 5719–5728 (2008)
Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology ePrint Archive, Report 2006/165 (2006), http://eprint.iacr.org/
Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of Pedersen’s distributed key generation protocol. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 373–390. Springer, Heidelberg (2003)
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. of Cryptology 20(1), 51–83 (2007)
Heidarvand, S., Villar, J.L.: Public verifiability from pairings in secret sharing schemes. In: Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 294–308. Springer, Heidelberg (2009)
Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: Introducing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000)
Malone-Lee, J., Smart, N.P.: Modifications of ECDSA. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 1–12. Springer, Heidelberg (2002)
Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall, Englewood Cliffs (2003)
Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended abstract). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. of Cryptology 13(3), 361–396 (2000)
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1989)
Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic voting. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999)
Shamir, A.: How to share a secret. Comm. of the ACM 22(11), 612–613 (1979)
Smart, N.P., Vercauteren, F.: On computable isomorphisms in efficient asymmetric pairing-based systems. Discrete Applied Mathematics 155(4), 538–547 (2007)
Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Simoens, K., Peeters, R., Preneel, B. (2010). Increased Resilience in Threshold Cryptography: Sharing a Secret with Devices That Cannot Store Shares. In: Joye, M., Miyaji, A., Otsuka, A. (eds) Pairing-Based Cryptography - Pairing 2010. Pairing 2010. Lecture Notes in Computer Science, vol 6487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17455-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-17455-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17454-4
Online ISBN: 978-3-642-17455-1
eBook Packages: Computer ScienceComputer Science (R0)