Skip to main content

On the Kernelization Complexity of Colorful Motifs

  • Conference paper
Parameterized and Exact Computation (IPEC 2010)

Abstract

The Colorful Motif problem asks if, given a vertex-colored graph G, there exists a subset S of vertices of G such that the graph induced by G on S is connected and contains every color in the graph exactly once. The problem is motivated by applications in computational biology and is also well-studied from the theoretical point of view. In particular, it is known to be NP-complete even on trees of maximum degree three [Fellows et al, ICALP 2007]. In their pioneering paper that introduced the color-coding technique, Alon et al. [STOC 1995] show, inter alia, that the problem is FPT on general graphs. More recently, Cygan et al. [WG 2010] showed that Colorful Motif is NP-complete on comb graphs, a special subclass of the set of trees of maximum degree three. They also showed that the problem is not likely to admit polynomial kernels on forests.

We continue the study of the kernelization complexity of the Colorful Motif problem restricted to simple graph classes. Surprisingly, the infeasibility of polynomial kernelization persists even when the input is restricted to comb graphs. We demonstrate this by showing a simple but novel composition algorithm. Further, we show that the problem restricted to comb graphs admits polynomially many polynomial kernels. To our knowledge, there are very few examples of problems with many polynomial kernels known in the literature. We also show hardness of polynomial kernelization for certain variants of the problem on trees; this rules out a general class of approaches for showing many polynomial kernels for the problem restricted to trees. Finally, we show that the problem is unlikely to admit polynomial kernels on another simple graph class, namely the set of all graphs of diameter two. As an application of our results, we settle the classical complexity of Connected Dominating Set on graphs of diameter two — specifically, we show that it is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambalath, A.M., Balasundaram, R., Chintan Rao, H., Koppula, V., Misra, N., Philip, G., Ramanujan, M.S.: On the kernelization complexity of colorful motifs (2010), http://www.imsc.res.in/~gphilip/publications/cm.pdf [Full Version]

  2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 635–646. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 74–89. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Cai, J.-y., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing provers yield improved Karp-Lipton collapse results. Information and Computation 198(1), 1–23 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization hardness of connectivity problems in d-degenerate graphs. Accepted at WG 2010 (2010)

    Google Scholar 

  7. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Proceedings of ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

    Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  9. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: On out-trees with many leaves. In: Proceedings of STACS 2009, pp. 421–432 (2009)

    Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  12. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Proceedings of STOC 2008, pp. 133–142. ACM, New York (2008)

    Google Scholar 

  13. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 405–416. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: Application to metabolic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 360–368 (2006)

    Article  Google Scholar 

  15. Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD thesis, University of Bergen, Norway (2009)

    Google Scholar 

  16. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambalath, A.M. et al. (2010). On the Kernelization Complexity of Colorful Motifs. In: Raman, V., Saurabh, S. (eds) Parameterized and Exact Computation. IPEC 2010. Lecture Notes in Computer Science, vol 6478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17493-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17493-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17492-6

  • Online ISBN: 978-3-642-17493-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics