Skip to main content

On Greedy Algorithms for Decision Trees

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6507))

Included in the following conference series:

Abstract

In the general search problem we want to identify a specific element using a set of allowed tests. The general goal is to minimize the number of tests performed, although different measures are used to capture this goal. In this work we introduce a novel greedy approach that achieves the best known approximation ratios simultaneously for many different variations of this identification problem. In addition to this flexibility, our algorithm admits much shorter and simpler analyses than previous greedy strategies. As a second contribution, we investigate the potential of greedy algorithms for the more restricted problem of identifying elements of partially ordered sets by comparison with other elements. We prove that the latter problem is as hard to approximate as the general identification problem. As a positive result, we show that a natural greedy strategy achieves an approximation ratio of 2 for tree-like posets, improving upon the previously best known 14-approximation for this problem.

This work was supported by a fellowship within the Postdoc-Programme of the German Academic Exchange Service (DAAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, J.: Code and parse trees for lossless source encoding. In: Compression and Complexity of Sequences 1997, pp. 145–171 (1997)

    Google Scholar 

  2. Adler, M., Heeringa, B.: Approximating optimal binary decision trees. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 1–9. Springer, Heidelberg (2008)

    Google Scholar 

  3. Arkin, E., Meijer, H., Mitchell, J., Rappaport, D., Skiena, S.: Decision trees for geometric models. International Journal of Computational Geometry and Applications 8(3), 343–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.: Searching in random partially ordered sets. Theoretical Computer Science 321(1), 41–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakaravarthy, V., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision trees for entity identification: Approximation algorithms and hardness results. In: PODS, pp. 53–62 (2007)

    Google Scholar 

  6. Chakaravarthy, V., Pandit, V., Roy, S., Sabharwal, P.: Approximating decision trees with multiway branches. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 210–221. Springer, Heidelberg (2009)

    Google Scholar 

  7. Dasgupta, S.: Analysis of a Greedy Active Learning Strategy. In: NIPS (2007)

    Google Scholar 

  8. Daskalakis, C., Karp, R., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selection in posets. In: SODA, pp. 392–401 (2009)

    Google Scholar 

  9. Dereniowski, D., Kubale, M.: Efficient parallel query processing by graph ranking. Fundamenta Informaticae 69 (2008)

    Google Scholar 

  10. Dereniowski, D.: Edge ranking and searching in partial orders. Discrete Applied Mathematics 156(13), 2493–2500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M.: Optimal binary identification procedures. SIAM Journal on Applied Mathematics 23(2), 173–186 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garey, M., Graham, R.: Performance bounds on the splitting algorithm for binary testing. Acta Informatica 3, 347–355 (1974)

    Article  MATH  Google Scholar 

  14. Golin, M., Kenyon, C., Young, N.: Huffman coding with unequal letter costs. In: STOC, pp. 785–791 (2002)

    Google Scholar 

  15. Guillory, A., Bilmes, J.: Average-Case Active Learning with Costs. In: The 20th Intl. Conference on Algorithmic Learning Theory (2009)

    Google Scholar 

  16. Gupta, A., Krishnaswamy, R., Nagarajan, V., Ravi, R.: Approximation algorithms for optimal decision trees and adaptive TSP problems. In: ICALP (2010)

    Google Scholar 

  17. Hyafil, L., Rivest, R.: Constructing obtimal binary decision trees is NP-complete. Information Processing Letters 5, 15–17 (1976)

    Article  MATH  Google Scholar 

  18. Jacobs, T., Cicalese, F., Laber, E., Molinaro, M.: On the Complexity of Searching in Trees: Average-Case Minimization. In: ICALP (2010)

    Google Scholar 

  19. Knight, W.: Search in an ordered array having variable probe cost. SIAM Journal on Computing 17(6), 1203–1214 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knuth, D.: Optimum binary search trees. Acta. Informat. 1, 14–25 (1971)

    Article  MATH  Google Scholar 

  21. Kosaraju, R., Przytycka, T., Borgstrom, R.: On an optimal split tree problem. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 157–168. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Laber, E., Milidiú, R., Pessoa, A.: On binary searching with non-uniform costs. In: SODA, pp. 855–864 (2001)

    Google Scholar 

  23. Laber, E., Molinaro, M.: An Approximation Algorithm for Binary Searching in Trees. Algorithmica, doi: 10.1007/s00453-009-9325-0

    Google Scholar 

  24. Laber, E., Nogueira, L.: On the hardness of the minimum height decision tree problem. Discrete Applied Mathematics 144(1-2), 209–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lipman, M., Abrahams, J.: Minimum average cost testing for partially ordered components. IEEE Transactions on Information Theory 41, 287–291 (1995)

    Article  MATH  Google Scholar 

  26. Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in linear time. In: SODA, pp. 1096–1105 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cicalese, F., Jacobs, T., Laber, E., Molinaro, M. (2010). On Greedy Algorithms for Decision Trees. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17514-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17513-8

  • Online ISBN: 978-3-642-17514-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics