Skip to main content

Flows in One-Crossing-Minor-Free Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6506))

Included in the following conference series:

  • 1218 Accesses

Abstract

We study the maximum flow problem in directed H-minor-free graphs where H can be drawn in the plane with one crossing. If a structural decomposition of the graph as a clique-sum of planar graphs and graphs of constant complexity is given, we show that a maximum flow can be computed in O(nlogn) time. In particular, maximum flows in directed K 3,3-minor-free graphs and directed K 5-minor-free graphs can be computed in O(nlogn) time without additional assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an excluded minor and its applications. In: Proc. 22nd ACM Symp. on Theory of Computing (STOC 1990), pp. 293–299 (1990), doi: http://doi.acm.org/10.1145/100216.100254

  2. Asano, T.: An approach to the subgraph homeomorphism problem. Theoretical Computer Science 38(2-3), 249–267 (1985), doi:10.1016/0304-3975(85)90222-1

    Article  MATH  MathSciNet  Google Scholar 

  3. Borradaile, G., Klein, P.: An O(nlogn) algorithm for maximum st-flow in a directed planar graph. Journal of the ACM 56(2):Art. No. 9 (2009), doi:10.1145/1502793.1502798, http://www.math.uwaterloo.ca/~glencora/downloads/maxflow-full.pdf

  4. Chambers, E.W., Erickson, J., Nayyeri, A.: Homology flows, cohomology cuts. In: Proc. 41st ACM Symposium on Theory of Computing (STOC 2009), pp. 273–282 (2009), doi:10.1145/1536414.1536453

    Google Scholar 

  5. Chambers, E.W., Erickson, J., Nayyeri, A.: Minimum cuts and shortest homologous cycles. In: Proc. 25th ACM Symposium on Computational Geometry (SoCG 2009), pp. 377–385 (2009), doi:10.1145/1542362.1542426

    Google Scholar 

  6. Chaudhuri, S., Subrahmanyam, K.V., Wagner, F., Zaroliagis, C.D.: Computing mimicking networks. Algorithmica 26(1), 31–49 (2000), doi:10.1007/s004539910003

    Article  MATH  MathSciNet  Google Scholar 

  7. Demaine, E.D., Hajiaghayi, M., Ichi Kawarabayashi, K.: Algorithmic Graph Minor Theory: Decomposition, Approximation, and Coloring. In: Proc. 46th IEEE Symp. on Foundations of Computer Science (FOCS 2005), pp. 637–646 (2005), http://erikdemaine.org/papers/Decomposition_FOCS2005/

  8. Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: 1.5-Approximation for treewidth of graphs excluding a graph with one crossing as a minor. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 67–80. Springer, Heidelberg (2002), doi:10.1007/3-540-45753-4_8

    Chapter  MATH  Google Scholar 

  9. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pp. 436–441 (1989), doi:10.1109/SFCS.1989.63515

    Google Scholar 

  10. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000), doi:10.1007/s004530010020, arXiv:math.CO/9907126

    Google Scholar 

  11. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator based sparsification for dynamic planar graph algorithms. In: Proc. 25th ACM Symp. on Theory of Computing (STOC 1993), pp. 208–217 (1993), doi:10.1145/167088.167159

    Google Scholar 

  12. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gale, D.: A theorem on flows in networks. Pacific Journal of Mathematics 7, 1073–1082 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multiterminal flow networks and computing flows in networks of small treewidth. Journal of Computer and System Sciences 57(3), 366–375 (1998), doi:10.1006/jcss.1998.1592

    Article  MATH  MathSciNet  Google Scholar 

  15. Hall, D.W.: A note on primitive skew curves. Bulletin of the American Mathematical Society 49(12), 935–936 (1943), doi:10.1090/S0002-9904-1943-08065-2

    Article  MATH  MathSciNet  Google Scholar 

  16. Hassin, R.: Maximum flow in (s,t) planar networks. Information Processing Letters 13(3), 107 (1981), http://www.math.tau.ac.il/~hassin/planarst.pdf

    Article  MathSciNet  Google Scholar 

  17. Hassin, R., Johnson, D.B.: An O\(({\it nlog^{2}n}\)) algorithm for maximum flow in undirected planar networks. SIAM J. Comput. 14(3), 612–624 (1985), doi:10.1137/0214045

    Article  MATH  MathSciNet  Google Scholar 

  18. Hochstein, J.M., Weihe, K.: Maximum s-t-flow with k crossings in O(k 3 nlogn) time. In: Proc. 18th ACM–SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 843–847 (2007), http://portal.acm.org/citation.cfm?id=1283383.1283473

  19. Hopcroft, J., Tarjan, R.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973), doi:10.1137/0202012

    Article  MATH  MathSciNet  Google Scholar 

  20. Itai, A., Shiloach, Y.: Maximum flow in planar networks. SIAM J. Comput. 8(2), 135–150 (1979), doi:10.1137/0208012

    Article  MATH  MathSciNet  Google Scholar 

  21. Johnson, D.B., Venkatesan, S.: Using divide and conquer to find flows in directed planar networks in O(n 3/2 logn) time. In: Proc 20th Allerton Conference on Communication, Control, and Computing, pp. 898–905 (1982)

    Google Scholar 

  22. Kézdy, A., McGuinness, P.: Sequential and parallel algorithms to find a K 5 minor. In: Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms (SODA 1992), pp. 345–356 (1992), http://portal.acm.org/citation.cfm?id=139404.139475

  23. Khuller, S., Naor, J.: Flow in planar graphs with vertex capacities. Algorithmica 11(3), 200–225 (1994), doi:10.1007/BF01240733

    Article  MATH  MathSciNet  Google Scholar 

  24. Khuller, S., Naor, J., Klein, P.: The lattice structure of flow in planar graphs. SIAM J. Discrete Math. 6(3), 477–490 (1993), doi:10.1137/0406038

    Article  MATH  MathSciNet  Google Scholar 

  25. Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke Mathematical Journal 3(3), 460–472 (1937), doi:10.1215/S0012-7094-37-00336-3

    Article  MATH  MathSciNet  Google Scholar 

  26. Miller, G.L., Naor, J.: Flow in planar graphs with multiple sources and sinks. SIAM J. Comput 24(5), 1002–1017 (1995), doi:10.1137/S0097539789162997

    Article  MATH  MathSciNet  Google Scholar 

  27. Reed, B., Li, Z.: Optimization and recognition for K 5-minor free graphs in linear time. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, Springer, Heidelberg (2008), doi:10.1007/978-3-540-78773-0_18

    Google Scholar 

  28. Robertson, N., Seymour, P.: Graph minors. V. Excluding a planar graph. Journal of Combinatorial Theory, Series B 41(1), 92–114 (1986), doi:10.1016/0095-8956(86)90030-4

    Google Scholar 

  29. Robertson, N., Seymour, P.: Excluding a graph with one crossing. In: Graph Structure Theory: Proc. AMS–IMS–SIAM Joint Summer Research Conference on Graph Minors. Contemporary Mathematics, vol. 147, pp. 669–675. AMS, Providence (1993)

    Chapter  Google Scholar 

  30. Robertson, N., Seymour, P.: Graph minors. XVI. Excluding a non-planar graph. Journal of Combinatorial Theory, Series B 89(1), 43–76 (2003), doi:10.1016/S0095-8956(03)00042-X

    Google Scholar 

  31. Robertson, N., Seymour, P.: Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B 92(2), 325–357 (2004), doi:10.1016/j.jctb.2004.08.001

    Article  MATH  MathSciNet  Google Scholar 

  32. Wagner, K.: Ãœber eine Eigenschaft der ebenen Komplexe. Mathematische Annalen 114(1), 570–590 (1937), doi:10.1007/BF01594196

    Article  MATH  MathSciNet  Google Scholar 

  33. Wagner, K.: Ãœber eine Erweiterung des Satzes von Kuratowski. Deutsche Mathematik 2, 280–285 (1937)

    MATH  Google Scholar 

  34. Weihe, K.: Maximum (s, t)-flows in planar networks in O(|V|log|V|) time. Journal of Computer and System Sciences 55(3), 454–476 (1997), doi:10.1006/jcss.1997.1538

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chambers, E., Eppstein, D. (2010). Flows in One-Crossing-Minor-Free Graphs. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17517-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17517-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17516-9

  • Online ISBN: 978-3-642-17517-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics