Skip to main content

RANSAC Based Ellipse Detection with Application to Catadioptric Camera Calibration

  • Conference paper
Neural Information Processing. Models and Applications (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6444))

Included in the following conference series:

Abstract

In this paper, a simple method for ellipse detection is proposed and applied in central catadioptric camera calibration. It consists of two phases. Firstly it locates ellipse center candidates using center symmetry of ellipses, and the detected edge points are grouped into several subsets according to the center candidates. Then all the ellipses are fitted by performing RANSAC for each subset. We also present an approach for calibrating a central catadioptric camera based on the bounding ellipse of the catadioptric image. Using the proposed ellipse detection method, we can easily detect the bounding ellipse. As a result, a simple self-calibration can be realized, which can be used in some applications where high accuracy of the calibration is not required. Experiments show the proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguado, A., Montiel, M.E., Nixon, M.S.: On using directional information for parameter space decomposition in ellipse detection. Pattern Recognition 29, 369–381 (1996)

    Article  Google Scholar 

  2. Baker, S., Nayer, S.: A theory of single-viewpoint catadioptric image formation. IJCV 35, 175–196 (1999)

    Article  Google Scholar 

  3. Barreto, J.P., Araujo, H.: Geometric properties of central catadioptric line images and their application in calibration. IEEE Trans. on PAMI 27, 1327–1333 (2005)

    Article  Google Scholar 

  4. Barreto, J.P., Araujo, H.: Fitting conics to paracatadioptric projection of lines. Computer Vision and Image Understanding 101, 151–165 (2006)

    Article  Google Scholar 

  5. Vossler, D.L.: Exploring Analytic Geometry with Mathematica. Academic Press, London (1999)

    MATH  Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Geyer, C., Daniilidis, K.: Catadioptric camera calibration. In: Proc.7th ICCV, vol. I, pp. 398–404 (1999)

    Google Scholar 

  8. Geyer, C., Daniilidis, K.: Catadioptric projective geometry. IJCV 45(3), 223–243 (2001)

    Article  MATH  Google Scholar 

  9. Ho, C.T., Chen, L.H.: A fast ellipse/circle detector using geometric symmetry. Pattern Recognition 28, 117–124 (1995)

    Article  Google Scholar 

  10. Hutter, M., Brewer, N.: Matching 2-D Ellipses to 3-D Circles with Application to Vehicle Pose Identification. IVCNZ, 153–158 (2009)

    Google Scholar 

  11. Kang, S.: Catadioptric self calibration. CVPR I, 201–207 (2000)

    Google Scholar 

  12. Kwolek, B.: Stereo-vision based head tracking using color and ellipse fitting in a particle filter. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 192–204. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Wu, F.C., Duan, F.Q., Hu, Z.Y., Wu, Y.H.: A new linear algorithm for calibrating central catadioptric cameras. Pattern Recognition 41, 3166–3172 (2008)

    Article  Google Scholar 

  14. Wu, Y., Li, Y., Hu, Z.: Easy calibration for para-catadioptric-like camera. In: IEEE International Conference on Intelligent Robots and Systems, pp. 5719–5724 (2006)

    Google Scholar 

  15. Xu, L., Oja, E.: Randomized Hough Transform(RHT): Basic Mechanisms, Algorithms and Complexities. Computer Vision, Graphics, and Image Processing: Image Understanding 57, 131–151 (1993)

    Article  Google Scholar 

  16. Ying, X.H., Hu, Z.Y.: Catadioptric camera calibration using geometric invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(10), 1260–1271 (2004)

    Article  Google Scholar 

  17. Ying, X.H., Zha, H.B.: Identical projective geometric properties of central catadioptric line images and sphere images with applications to calibration. IJCV 78, 89–105 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duan, F., Wang, L., Guo, P. (2010). RANSAC Based Ellipse Detection with Application to Catadioptric Camera Calibration. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17534-3_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17533-6

  • Online ISBN: 978-3-642-17534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics