Skip to main content

An Effect of Inhibitory Connections on Synchronous Firing Assembly in the Inhibitory Connected Pulse Coupled Neural Network

  • Conference paper
Neural Information Processing. Theory and Algorithms (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Included in the following conference series:

  • 2476 Accesses

Abstract

The Pulse Coupled Neural Network (PCNN) had been proposed as a model of visual cortex and a lot of applications to the image processing have been proposed recently. Authors also have been proposed Inhibitory Connected PCNN (IC-PCNN) which shows good performances for the color image processing. In our recent study, we had been shown that the IC-PCNN can obtain successful results for the color image segmentation. In this study, we show the effect of the inhibitory connections to the characteristics of synchronous firing assembly. Here we consider that the results will be a key to find appropriate values of inhibitory connections for the image processing using IC-PCNN. In simulations, we show that the valid domains of inhibitory connections for the color image segmentation exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Echorn, R., Reitboeck, H.J., Arndt, M., Dicke, P.: Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Computation 2, 293–307 (1990)

    Article  Google Scholar 

  2. Echorn, R.: Neural Mechanisms of Scene Segmentation: Recording from the Visual Cortex Suggest Basic Circuits for Liking Field Model. IEEE Trans. Neural Network 10(3), 464–479 (1999)

    Article  Google Scholar 

  3. Johnson, J.L., Padgett, M.L.: PCNN Models and Applications. IEEE Trans. Neural Network 10(3), 480–498 (1999)

    Article  Google Scholar 

  4. Lindblad, T., Kinser, J.M.: Image processing using Pulse-Coupled Neural Networks, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  5. Zhou, L., Sun, Y., Zheng, J.: Automated Color Image Edge Detection using Improved PCNN Model. WSEAS Transactions on Computers 7(4), 184–189 (2008)

    Google Scholar 

  6. Xiong, X., Wang, Y., Zhang, X.: Color Image Segmentation using Pulse-Coupled Neural Network for Locusts Detection. In: Proc. of the International Conference on Data Mining, pp. 410–413 (2006)

    Google Scholar 

  7. Kurokawa, H., Kaneko, S., Yonekawa, M.: A color image segmentation using inhibitory connected pulse coupled neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5507, pp. 776–783. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Yonekawa, M., Kurokawa, H.: An automatic parameter adjustment method of Pulse Coupled Neural Network for image segmentation. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5768, pp. 834–843. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Yonekawa, M., Kurokawa, H.: The parameter optimization of the pulse coupled neural network for the pattern recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, Springer, Heidelberg (2010)

    Google Scholar 

  10. Ranganth, H.S., Kuntimad, G.: Perfect image segmentation using pulse coupled neural networks. IEEE Trans. Neural Networks 10(3), 591–598 (1999)

    Article  Google Scholar 

  11. Ishihara, S.: Tests for colour-blindness, Handaya (1917)

    Google Scholar 

  12. Images of the Ishihara color test are able to be found on web pages, for example, http://en.wikipedia.org/wiki/Ishihara_color_test http://www.toledo-bend.com/colorblind/Ishihara.htm etc

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurokawa, H., Yoshihara, M., Yonekawa, M. (2010). An Effect of Inhibitory Connections on Synchronous Firing Assembly in the Inhibitory Connected Pulse Coupled Neural Network. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics