Abstract
Determining induction motor field efficiency is imperative in industries for energy conservation and cost savings. The induction motor efficiency is generally tested in a laboratories by certain methods defined in IEEE Standard – 112. But these methods cannot be used for motor efficiency evaluations in the field because it disrupts the production process of the industry. This paper proposes a swarm intelligence algorithm, Particle Swarm Optimization (PSO) for efficiency evaluation of in-service induction motor based on a modified induction motor equivalent circuit model. In this model, stray load losses are considered. The proposed efficiency evaluation method combines the PSO and the equivalent circuit method. First, the equivalent circuit parameters are estimated by minimizing the difference between measured and calculated values of stator current and input power of the motor using the PSO algorithm. Based on these parameters, the efficiency of the motor at various load points are evaluated by using the equivalent circuit method. To exemplify the performance of the PSO based efficiency estimation method, a 5 HP motor has been tested, compared with genetic algorithm (GA), torque gauge method, equivalent circuit method, slip method, current method and segregated loss method and found to be superior. Accordingly, the method will be useful for engineers who implement the energy efficiency programs to the electric motor systems in industries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lu, B., Habetler, T.G., Harley, R.G.: A Survey of Efficiency-Estimation Methods for In-Service Induction Motors. IEEE Trans. Ind. Appl. 42(4), 924–933 (2006)
IEEE Standard Test Procedure for Polyphase Induction Motors and Generators, IEEE Std. 112 (2004)
In-Plant Electric Motor Loading and Efficiency Techniques, Ontario Hydro Report TSDD – 90 – 043 (1990)
Hsu, J., Kueck, J., Olszewski, M., Casada, D., Otaduy, P., Tolbert, L.: Comparison of Induction Motor Field Estimation Methods. IEEE Trans. Ind. Appl. 34(1), 117–125 (1998)
EI-Ibiary, Y.: An Accurate Low Cost Method for Determining Electric Motor’s Efficiency for the Purpose of Plant Energy Management. IEEE Trans. Industrial Applications 39(4), 1205–1210 (2003)
Bishop, R.R., Richards, G.G.: Identifying Induction Machine Parameters Using a Genetic Optimization Algorithm. Proc. Southeastcon. IEEE 2, 476–479 (1990)
Alonge, F., Dippolito, F., Ferrante, G., Raimondi, F.M.: Parameter Identification of Induction Motor Model Using Genetic Algorithms. IEE Proc. Control Theory Appl. 145(6), 587–593 (1998)
Pillay, P., Nollan, R., Haque, T.: Application of Genetic Algorithms to Motor Parameter Determination for Transient Torque Calculations. IEEE Trans. Ind. Appl. 33(5), 1273–1282 (1997)
Rahimpour, E., Rashtchi, V., Pesaran, M.: Parameter Identification of Deep-Bar Induction Motors Using Genetic Algorithm. Electrical Engineering 89, 547–552 (2007)
Huang, K.S., Kent, W., Wu, Q.H., Turner, D.R.: Parameter Identification for Induction Motors Using Genetic Algorithm with Improved Mathematical Model. Electric Power Components and Systems 29(3), 247–258 (2001)
Nollan, R., Pillay, P., Haque, T.: Application of genetic algorithms to motor parameter determination. In: Proc. of 1994 IEEE-IAS conference, Denvar, pp. 47–54 (1994)
Orlowska Kowalska, T., Lis, J., Szabat, K.: Identification of the Induction Motor Parameters Using Soft Computing Methods. COMPEL 25(1), 181–192 (2006)
Abdelhadi, B., Benoudjit, A., Nait Said, N.: Identification of Induction Machine Parameters Using an Adaptive Genetic Algorithm. Electric Power Components and Systems 32, 767–784 (2004)
Subramanian, S., Bhuvaneswari, R.: Evolutionary Programming Based Determination of Induction Motor Efficiency. Electric Power Components and Systems 34, 565–576 (2006)
Ursem, R.K., Vadstrup, P.: Parameter Identification of Induction Motors Using Differential Evolution. In: The 2993 Congress on Evolutionary Computation CEC 2003, vol. 2, pp. 790–796 (2003)
Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd edn. IEEE Press, Piscataway (2000)
Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the IEEE conference on neural networks – ICNN 1995, Perth, Australia, vol. IV, pp. 1942–1948 (1995)
Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proceedings of the IEEE International Congress Evolutionary Computation, vol. (3), pp. 101–106 (1999)
Eberhart, R., Kennedy, J.: A New Optimizer Using Particle Swarm Optimization. In: Proceedings of the 1995 Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)
Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proceedings of the IEEE International Congress Evolutionary Computation, vol. (1), pp. 84–88 (2000)
Chaturvedi, K.T., Pandit, M., Srivastava, L.: Particle Swarm Optimization with Time Varying Acceleration Coefficients for Non-Convex Economic Power Dispatch. Electrical Power and Energy Systems 31, 249–257 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sakthivel, V.P., Subramanian, S. (2010). Swarm Intelligence Algorithm for Induction Motor Field Efficiency Evaluation. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2010. Lecture Notes in Computer Science, vol 6466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17563-3_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-17563-3_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17562-6
Online ISBN: 978-3-642-17563-3
eBook Packages: Computer ScienceComputer Science (R0)