Skip to main content

A Study on Data Transmission Performance of Sensor Networks for Livestock Feedlot

  • Conference paper
Future Generation Information Technology (FGIT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6485))

Included in the following conference series:

  • 1969 Accesses

Abstract

Recent development of versatile small size and multifunctional wireless sensor nodes enables the research on various applications to improve human life with rich information and automation. In this study, we virtually simulated the efficiency of the livestock feedlot sensor network by utilizing the propagation model, as one of the different methods of collecting data regarding livestock in feedlot is researched. As indicated in the conclusion of the study, the differences in terms of the methods make a difference to the amount of dropped data packets. It is believed that the observations made in this study could prompt the development of more effective methods of collecting data regarding livestock in feedlots by adopting additional devices or alternative routing manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, R.A.: Impact of disease on feedlot performance: a review. Journal of Animal Science (1998), animal-science.org

  2. Jim, G.K., Booker, C.W., Ribble, C.S., Guichon, P.T., Thorlakson, B.E.: A field investigation of the economic impact of respiratory disease in feedlot calves. Can. Vet. J. 34, 668–673 (1993)

    Google Scholar 

  3. Wang, N., Zhang, N., Wang, M.: Wireless sensors in agriculture and food industry—Recent development and future perspective. Computers and Electronics in Agriculture 50, 1–14 (2005)

    Article  Google Scholar 

  4. Nagl, L., Schmitz, R., Warren, S., Hildreth, T.S., Erickson, H., Andresen, D.: Wearable sensor system for wireless state-of-health determination in livestock. In: Proceedings of the 25th IEEE EMBS Conference, Cancun, Mexico, September 17–21 (2003)

    Google Scholar 

  5. Radenkovic, M., Wietrzyk, B.: Wireless mobile ad-hoc sensor networks for very large scale livestock monitoring. In: Proc. of ASWN, Berlin, Germany, pp. 47–58 (2006)

    Google Scholar 

  6. Maatje, K., de Mol, R.M., Rossing, W.: Cow status monitoring (health and oestrus) using detection sensors. Computers and Electronics in Agriculture 16(3), 245–254 (1997)

    Article  Google Scholar 

  7. Kreuzgruber, P., Unterberger, P., Gahleitner, R.: A ray splitting model for indoor radio propagation associated with complex geometries. In: 43rd IEEE Veh. Technol. Conf. Secaucus, NJ, pp. 227–230 (May 1993)

    Google Scholar 

  8. Obayashi, S., Zander, J.: A body-shadowing model for indoor radio communication environments. IEEE Transactions Antennas and Propagation, 920–927 (1998)

    Google Scholar 

  9. Habaebi, M.H., Abduljali, E., Ragaibi, T., Rhuma, N.: Effect of sensor specific body location on wireless network routing performance. Electronics Letters, 40–42 (January 3, 2008)

    Google Scholar 

  10. Gruber, I., Knauf, O., Li, H.: Performance of Ad Hoc Routing Protocols in Urban Environments. In: Proceedings of European Wireless (2004)

    Google Scholar 

  11. Fall, K., Varadhan, K.: The ns Manual (formerly ns Notes and Documentation). The VINT Project, A Collaboration between researches at UC Berkeley, LBL, USC/ISI and Xerox PARC

    Google Scholar 

  12. Perkins, C., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector (dsdv) routing for mobile computers. In: Proceedings of ACM SIGCOMM (1994)

    Google Scholar 

  13. Perkins, C., Royer, E.: Ad hoc On demand Distance Vector Routing. In: Proc. of 2nd IEEE Workshop on Mobile Computing Systems and Applications (February 1999)

    Google Scholar 

  14. Johnson, D., Maltz, D.: Dynamic source routing in ad hoc wireless networks. In: Imielinski, T., Korth, H. (eds.) Mobile Computing, The Netherlands, pp. 153–181. Kluwer Academic Publishers, Dordrecht (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, Jw., Kang, Hj., Hwang, Jh., Lee, Mh., Yoe, H. (2010). A Study on Data Transmission Performance of Sensor Networks for Livestock Feedlot. In: Kim, Th., Lee, Yh., Kang, BH., Ślęzak, D. (eds) Future Generation Information Technology. FGIT 2010. Lecture Notes in Computer Science, vol 6485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17569-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17569-5_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17568-8

  • Online ISBN: 978-3-642-17569-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics