Skip to main content

UWB-Based Tracking of Autonomous Vehicles with Multiple Receivers

  • Conference paper
Communication and Networking (FGCN 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 119))

Abstract

In this paper, we consider real-time tracking of an Autonomous Guided Vehicle (AGV) in an indoor industrial scenario. An on-board odometer provides information about the dynamic state of the AGV, allowing to predict its pose (position and orientation). At the same time, an external Ultra Wide Band (UWB) wireless network provides the information necessary to compensate the error drift accumulated by the odometer. Two novel alternative solutions for real-time tracking are proposed: (i) a classical Time Differences of Arrivals (TDOA) approach with a single receiver; (ii) a “Twin-receiver” TDOA (TTDOA) approach, that requires the presence of two independent receivers on the AGV. The performance of the two proposed algorithms is evaluated in realistic conditions. The obtained results clearly show the tradeoff existing between the frequency of UWB measurements and their quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs). Amendment 1: Add Alternate PHYs (August 2007)

    Google Scholar 

  2. Anderson, R., Bevly, D.: Estimation of slip angles using a model based estimator and GPS. In: Proceedings of the American Control Conference, Boston, MA, USA, vol. 3, pp. 2122–2127 (June 2004)

    Google Scholar 

  3. Bevly, D., Ryu, J., Gerdes, J.: Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness. IEEE Transactions on Intelligent Transportation Systems 7(4), 483–493 (2006)

    Article  Google Scholar 

  4. Busanelli, S., Ferrari, G.: UWB-based tracking of autonomous vehicles with multiple receivers: Extended analytical framework. Tech. rep., n. 2010-09-17-GF, Dept. of Inform. Eng., University of Parma, Italy. Available upon request (September 2010)

    Google Scholar 

  5. Gezici, S., Poor, H.: Position estimation via ultra-wideband signals. Proceedings of the IEEE 97(2), 386–403 (2009)

    Article  Google Scholar 

  6. Gezici, S., Zhi, T., Giannakis, G.B., Kobayashi, H., Molisch, A.F., Poor, H.V., Sahinoglu, Z.: Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Mag. 22(4), 70–84 (2005)

    Article  Google Scholar 

  7. Guvenc, I., Chong, C.C., Watanabe, F., Inamura, H.: NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics. EURASIP J. Adv. Signal Process 2008, 36 (2008)

    Google Scholar 

  8. Haykin, S.: Adaptive filter theory. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  9. Jourdan, D.B., Roy, N.: Optimal sensor placement for agent localization. ACM Trans. Sen. Netw. 4(3), 1–40 (2008)

    Article  Google Scholar 

  10. Levanon, N.: Lowest GDOP in 2-D scenarios. IEE Proceedings-Radar, Sonar and Navigation 147(3), 149–155 (2000)

    Article  Google Scholar 

  11. Nájar, M., Vidal, J.: Kalman tracking based on TDOA for UMTS mobile location. In: Proc. IEEE International Symposium on Personal and Indoor and and Mobile Radio Commun., vol. 1, pp. B45–B49 (September 2001)

    Google Scholar 

  12. Rigatos, G.: Extended Kalman and particle filtering for sensor fusion in motion control of mobile robots. Math. Comput. Simul (May 2010)

    Google Scholar 

  13. Teslić, L., Škrjanc, I., Klančar, G.: EKF-based localization of a wheeled mobile robot in structured environments. Springer Journal of Intelligent and Robotic Systems, 1–17 (June 2010)

    Google Scholar 

  14. Ubisense System Overview: http://ubisense.net

  15. Win, M., Scholtz, R.: Impulse radio: how it works. IEEE Commun. Letters 2(2), 36–38 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Busanelli, S., Ferrari, G. (2010). UWB-Based Tracking of Autonomous Vehicles with Multiple Receivers. In: Kim, Th., Chang, A.CC., Li, M., Rong, C., Patrikakis, C.Z., Ślęzak, D. (eds) Communication and Networking. FGCN 2010. Communications in Computer and Information Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17587-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17587-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17586-2

  • Online ISBN: 978-3-642-17587-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics