Skip to main content

Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems

  • Conference paper
Cryptology and Network Security (CANS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6467))

Included in the following conference series:

Abstract

Recently, the Little Dragon Two and Poly-Dragon multivariate based public-key cryptosystems were proposed as efficient and secure schemes. In particular, the inventors of the two schemes claim that Little Dragon Two and Poly-Dragon resist algebraic cryptanalysis. In this paper, we show that MXL2, an algebraic attack method based on the XL algorithm and Ding’s concept of Mutants, is able to break Little Dragon Two with keys of length up to 229 bits and Poly-Dragon with keys of length up to 299. This contradicts the security claim for the proposed schemes and demonstrates the strength of MXL2 and the Mutant concept. This strength is further supported by experiments that show that in attacks on both schemes the MXL2 algorithm outperforms the Magma’s implementation of F4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  2. Ding, J., Gower, J.E., Schmidt, D.: Multivariate Public Key Cryptosystems (Advances in Information Security). Springer, New York (2006)

    MATH  Google Scholar 

  3. Ding, J., Yang, B.Y.: Multivariate Public Key Cryptography. In: Bernstein, D.J., et al. (eds.) Post Quantum Cryptography, pp. 193–234. Springer, Heidelberg (2008)

    Google Scholar 

  4. Singh, R.P., Saikia, A., Sarma, B.K.: Little Dragon Two: An Efficient Multivariate Public Key Cryptosystem. International Journal of Network Security and Its Applications (IJNSA) 2, 1–10 (2010)

    Article  MATH  Google Scholar 

  5. Jacques, P.: Asymmetric Cryptography with a Hidden Monomial. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 45–60. Springer, Heidelberg (1996)

    Google Scholar 

  6. Singh, R.P., Saikia, A., Sarma, B.: Poly-Dragon: An efficient Multivariate Public Key Cryptosystem. Cryptology ePrint Archive, Report 2009/587 (2009), http://eprint.iacr.org/

  7. Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.P.: MutantXL. In: Proceedings of the 1st International Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, pp. 16–22. LMIB (2008), http://www.cdc.informatik.tu-darmstadt.de/reports/reports/MutantXL_Algorithm.pdf

  8. Mohamed, M.S., Ding, J., Buchmann, J., Werner, F.: Algebraic Attack on the MQQ Public Key Cryptosystem. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 392–401. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  10. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving Polynomial Equations over GF(2) Using an Improved Mutant Strategy. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Ding, J.: Mutants and its Impact on Polynomial Solving Strategies and Algorithms. Privately distributed research note, University of Cincinnati and Technical University of Darmstadt (2006)

    Google Scholar 

  13. Ding, J., Cabarcas, D., Schmidt, D., Buchmann, J., Tohaneanu, S.: Mutant Gröbner Basis Algorithm. In: Proceedings of the 1st International Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, pp. 23–32. LMIB (2008)

    Google Scholar 

  14. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An Efficient Algorithm for Computing Gröbner Bases of Zero-dimensional Ideals. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010)

    Google Scholar 

  15. Albrecht, M., Bard, G.: The M4RI Library– Linear Algebra over GF(2) (2008), http://m4ri.sagemath.org

  16. Bard, G.V.: Algebraic Cryptanalysis. Springer Publishing Company, Incorporated, Heidelberg (2009)

    Book  MATH  Google Scholar 

  17. Wolf, C.: Efficient Public Key Generation for HFE and Variations. In: Dawson, E., Klemm, W. (eds.) Cryptographic Algorithms and their Uses, Queensland University of Technology, pp. 78–93 (2004)

    Google Scholar 

  18. Billet, O., Ding, J.: Overview of Cryptanalysis Techniques in Multivariate Public Key Cryptography. In: Sala, M., et al. (eds.) Gröbner Bases, Coding, and Cryptography, pp. 263–284. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchmann, J., Bulygin, S., Ding, J., Mohamed, W.S.A.E., Werner, F. (2010). Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems. In: Heng, SH., Wright, R.N., Goi, BM. (eds) Cryptology and Network Security. CANS 2010. Lecture Notes in Computer Science, vol 6467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17619-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17619-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17618-0

  • Online ISBN: 978-3-642-17619-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics