Abstract
Recently, the Little Dragon Two and Poly-Dragon multivariate based public-key cryptosystems were proposed as efficient and secure schemes. In particular, the inventors of the two schemes claim that Little Dragon Two and Poly-Dragon resist algebraic cryptanalysis. In this paper, we show that MXL2, an algebraic attack method based on the XL algorithm and Ding’s concept of Mutants, is able to break Little Dragon Two with keys of length up to 229 bits and Poly-Dragon with keys of length up to 299. This contradicts the security claim for the proposed schemes and demonstrates the strength of MXL2 and the Mutant concept. This strength is further supported by experiments that show that in attacks on both schemes the MXL2 algorithm outperforms the Magma’s implementation of F4.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Ding, J., Gower, J.E., Schmidt, D.: Multivariate Public Key Cryptosystems (Advances in Information Security). Springer, New York (2006)
Ding, J., Yang, B.Y.: Multivariate Public Key Cryptography. In: Bernstein, D.J., et al. (eds.) Post Quantum Cryptography, pp. 193–234. Springer, Heidelberg (2008)
Singh, R.P., Saikia, A., Sarma, B.K.: Little Dragon Two: An Efficient Multivariate Public Key Cryptosystem. International Journal of Network Security and Its Applications (IJNSA) 2, 1–10 (2010)
Jacques, P.: Asymmetric Cryptography with a Hidden Monomial. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 45–60. Springer, Heidelberg (1996)
Singh, R.P., Saikia, A., Sarma, B.: Poly-Dragon: An efficient Multivariate Public Key Cryptosystem. Cryptology ePrint Archive, Report 2009/587 (2009), http://eprint.iacr.org/
Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.P.: MutantXL. In: Proceedings of the 1st International Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, pp. 16–22. LMIB (2008), http://www.cdc.informatik.tu-darmstadt.de/reports/reports/MutantXL_Algorithm.pdf
Mohamed, M.S., Ding, J., Buchmann, J., Werner, F.: Algebraic Attack on the MQQ Public Key Cryptosystem. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 392–401. Springer, Heidelberg (2009)
Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)
Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving Polynomial Equations over GF(2) Using an Improved Mutant Strategy. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)
Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)
Ding, J.: Mutants and its Impact on Polynomial Solving Strategies and Algorithms. Privately distributed research note, University of Cincinnati and Technical University of Darmstadt (2006)
Ding, J., Cabarcas, D., Schmidt, D., Buchmann, J., Tohaneanu, S.: Mutant Gröbner Basis Algorithm. In: Proceedings of the 1st International Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, pp. 23–32. LMIB (2008)
Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An Efficient Algorithm for Computing Gröbner Bases of Zero-dimensional Ideals. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010)
Albrecht, M., Bard, G.: The M4RI Library– Linear Algebra over GF(2) (2008), http://m4ri.sagemath.org
Bard, G.V.: Algebraic Cryptanalysis. Springer Publishing Company, Incorporated, Heidelberg (2009)
Wolf, C.: Efficient Public Key Generation for HFE and Variations. In: Dawson, E., Klemm, W. (eds.) Cryptographic Algorithms and their Uses, Queensland University of Technology, pp. 78–93 (2004)
Billet, O., Ding, J.: Overview of Cryptanalysis Techniques in Multivariate Public Key Cryptography. In: Sala, M., et al. (eds.) Gröbner Bases, Coding, and Cryptography, pp. 263–284. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buchmann, J., Bulygin, S., Ding, J., Mohamed, W.S.A.E., Werner, F. (2010). Practical Algebraic Cryptanalysis for Dragon-Based Cryptosystems. In: Heng, SH., Wright, R.N., Goi, BM. (eds) Cryptology and Network Security. CANS 2010. Lecture Notes in Computer Science, vol 6467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17619-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-17619-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17618-0
Online ISBN: 978-3-642-17619-7
eBook Packages: Computer ScienceComputer Science (R0)