
Locality-Conscious Lock-Free Linked Lists ∗

Anastasia Braginsky† Erez Petrank‡

December 17, 2010

Abstract

We extend state-of-the-art lock-free linked lists by building linked lists with special care for
locality of traversals. These linked lists are built of sequences of entries that reside on consecutive
chunks of memory. When traversing such lists, subsequent entries typically reside on the same
chunk and are thus close to each other, e.g., in same cache line or on the same virtual memory
page. Such cache-conscious implementations of linked lists are frequently used in practice, but
making them lock-free requires care. The basic component of this construction is a chunk of
entries in the list that maintains a minimum and a maximum number of entries. This basic
chunk component is an interesting tool on its own and may be used to build other lock-free data
structures as well.

1 Introduction

Lock-free (also known as non-blocking) data structures provide a progress guarantee. If several
threads attempt to concurrently apply an operation on the structure, it is guaranteed that one
of the threads will make progress in finite time [7]. Many lock-free data structures have been
developed since the original notion was presented [11]. Concurrent algorithms in general, and lock-
free algorithms in particular, are error-prone and modifying existing algorithms requires care. In
this paper we study lock-free linked lists and propose a design for a cache-conscious linked list.

The first design of lock-free linked lists was presented by Valois [12]. He maintained auxiliary
nodes in between the list’s normal nodes, in order to resolve concurrent operations’ interference
problems. Also, each node in his list had a backlink pointer, which pointed to its predecessor
when the node was deleted. These backlinks were then used to backtrack through the list when
there was interference from a concurrent operation. A different lock-free implementation of linked
lists was given by Harris [6]. His main idea was to mark a node before deleting it in order to
prevent concurrent operations from changing its next-entry pointer. Harris’ algorithm is simpler
than Valois’s algorithm and his experimental results generally also perform better. Michael [8, 10]
proposed an extension to Harris’ algorithm that did not assume a garbage collection but reclaimed
entries of the list explicitly. To this end, he developed an underlying mechanism of hazard pointers
that was later used for explicit reclamation in other data structures as well. An improvement in

∗Supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 845/06).
†Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel

anastas@cs.technion.ac.il
‡Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel

erez@cs.technion.ac.il

1

complexity was achieved by Fomitchev and Rupert [3]. They use a smart retreat upon CAS failure,
rather than the standard restart from scratch.

In this paper we further extend Michael’s design to allow cache-conscious linked lists. Our
implementation partitions the linked list into sub-lists that reside on consecutive areas in the
memory, denoted chunks. Each chunk contains several consecutive list entries. For example, setting
each chunk to be one virtual page, causes list traversals to form a page-oriented memory access
pattern. This partition of the list into sub-lists, each residing on a small chunk of memory is often
used in practice (e.g., [1, 5]), but there is no lock-free implementation for such a list. Breaking the
list into chunks can be trivial if there is no restriction on the chunk size. In particular, if the size of
each chunk can decrease to a single element, then clearly, each chunk can trivially reside in a single
memory block, Michael’s implementation will do, but no locality improvement will be obtained for
list traversals. The sub-list’s chunk that our design provides maintains upper and lower bounds on
the number of elements it has. The upper bound simply follows from the size of the memory block
on which the chunk is located, and a lower bound is provided by the user. If a chunk grows too
much and cannot be held in a memory block, then it is split (in a lock-free manner) creating two
chunks, each residing at a separate location. Conversely, if a chunk shrinks below the lower bound,
then it is merged (in a lock-free manner) with the previous chunk in the list. In order for the split
to create acceptable chunks, it is required that the lower bound (on the number of objects in a
chunk) does not exceed half of the maximum number of entries in the chunk. Otherwise, a split
would create two chunks that violate the lower bound.

A natural optimization of search for such a list is to quickly jump to the next chunk (without
traversing all its entries), if the desired key is not within the key-range of this chunk. This gives us
additional performance improvement since the search progress is done in skips, where the size of
each skip is at least the chunk’s minimal boundary. Furthermore the retreat upon CAS failure, in
the majority of the cases is done by returning to beginning of the chunk, rather than the standard
restart from the beginning of the list.

To summarize, the contribution of this paper is the presentation of a lock-free linked list, based
on single word CAS commands, were the keys are unique and ordered. The algorithm does not
assume a assume no lock-free garbage collector. The list design is locality conscious. The design
poses a restriction on the keys and data length. For 64bit architecture the key is limited to 31 bit,
and the data is limited to 32 bit.

Organization. In Section 2 we specify the underlying structure we use to implement the
chunked linked list. In Section 3 we introduce the freeze mechanism that will serve the split and
join operations. In Section 4 we provide the implementation of the linked list functions. A closer
look at the freezing mechanism details appear in Section 5 and we conclude in Section 6. The full
details of the freezing mechanism are presented in Appendix A. Appendices B, C, and D provide
the full implementations of the operations on the list that did not fit into the main body of the
paper. In Appendix E we specify the linearization points for the linked list operations, and in
Appendix F we explain the design considerations and provide some intuition about the correctness
of the algorithm.

2 Preliminaries and Data Structure

A linked list is a data structure that consists of a sequence of data records. Each data record
contains a key by which the linked list is ordered. We denote each data record an entry. We think

2

freeze
1

1 bit

freeze
2

1 bit

delete

1 bit62 bit31 bit32 bit

data key next{
key-data word

{

next-entry word

Figure 1: The entry structure.

of the linked list as representing a set of keys, each associated with a data part. Following previous
work [2, 4, 6], a key cannot appear twice in the list. Thus, an attempt to insert a key that exists
in the list fails. Each entry holds the key and data associated with it. Generally, this data is a
pointer, or a mapping from the key to a larger piece of data associated with it. Next, we present
the underlying data structure employed in the construction. We assume a 64-bit platform in this
description. A 32-bit implementation can easily be derived, by either cutting each field in half, or
by keeping the same structure, but using a wide compare-and-swap, which writes atomically to two
consecutive words.

The structure of an entry A list entry consists of a key and a data fields, and the next pointer
(pointing to next entry). These fields are arranged in two words, where the key and data reside
in the first word and the next pointer in the second. Three more bits are embedded in these two
words. First, we embed the delete bit in the least bit of the next pointer, following Harris [6]. The
delete bit is set to mark the logical deletion of the entry. The freeze bits are new in this design.
They take a bit from each of the entry’s words and their purpose is to indicate that the entire chunk
holding the entry is about to be retired. These three flags consume one bit of the key and two bits
from the next pointer. Notice that the three LSBs of a pointer do not really hold information on
a 64-bit architecture. The entry structure is depicted in Figure 1. In what follows, we refer to the
first word as the keyData word, and the second word as the nextEntry word.

We further reserve one key value, denoted by ⊥ to signify that the entry is currently not
allocated. This value is not allowed as a key in the data structure. As will be discussed in Section
4, an entry is available for allocation if its key is ⊥ and its other fields are zeroed.

The structure of a chunk The main support for locality stems from the fact that consecutive
entries are kept on a chunk, so that traversals of the list demonstrate better locality. In order to
keep a substantial number of entries on each chunk, the linked list makes sure that the number of
entries in a chunk is always between the parameters min and max. The main part of a chunk is
an array that holds the entries in a chunk and may hold up to max entries of the linked list. In
addition, the chunk holds some fields that help manage the chunk. First, we keep one special entry
that serves as a dummy header entry, whose next pointer points to the first entry in this chunk.
The dummy header is not a must, but it simplifies the algorithm’s code. To identify chunks that
are too sparse, each chunk has a counter of the number of entries currently allocated in it. In the
presence of concurrent mutations, this counter will not always be accurate, but it will always hold
a lower bound on the number of allocated entries in the chunk. When an attempt is made to insert
too many entries into a chunk, the chunk is split. When it becomes too small due to deletions, it is
merged with a neighboring chunk. We require max > 2·min+1, since splitting a large chunk must
create two well-formed new chunks. In practice max will be substantially larger than 2·min to avoid

3

key: 9
del. bit: 1

key: 5
del. bit: 0

key: 1
del. bit: 1

key: 12
del. bit: 0

key: 8
del. bit: 0

key: ┴
del. bit: 0

. . .

head

counter

64 bit (word)

new

64 bit (word)

mergeBuddy

 64 bit (word)

3 LSBs
freezeState

entriesArray[MAX]

…

nextChunk

64 bit (word)

Figure 2: The chunk structure.

frequent splits and merges. Additional fields (new, mergeBuddy and freezeState) are needed for
running the splits and the merges and are discussed in Section 5. The chunk structure is depicted
in Figure 2.

The structure of entire list The entire list consists of a list of chunks. Initially we have a
head pointer pointing to an empty first chunk. We let the first chunk’s min boundary be set to
0, to allow small lists. The list grows and shrinks due to the splitting and merging of the chunks.
Every chunk has a pointer nextChunk to the next chunk, or to null if it is the last chunk of the
list. The keys of the entries in the chunks never overlap, i.e., each chunk contains a consecutive
subset of keys in the set, and a pointer to the next chunk, containing the next subset (with strictly
higher keys) in the set. The entire list structure is depicted in Figure 3. We set the first key in a
chunk as its lowest possible key. Any smaller key is inserted in the previous chunk (except for the
first chunk that can also get keys smaller than its first one.)

Hazard pointers Whole chunks and entries inside a chunk are reclaimed manually. Note that
garbage collectors do not typically reclaim entries inside an array. To allow safe (and lock-free)
reclamation of entries manually, we employ Michael’s hazard pointers methodology [8, 10]. While
a thread is processing an entry - and a concurrent reclamation of this entry can foil its actions - the
thread registers the location of this entry in a special pointer called a hazard pointer. Reclamation
of entries that have hazard pointers referencing them is avoided. Following Michael’s list imple-
mentation [10], each thread has two hazard pointers, denoted hp0 and hp1 that aid the processing
of entries in a chunk. We further add four more hazard pointers hp2, hp3, hp4, and hp5, to handle
the operations of the chunk list. Each thread only updates its own hazard pointers, though it can
read the other threads’ hazard pointers.

3 Using a Freeze to Retire a Chunk

In order to maintain the minimum and maximum number of entries in a chunk, we devised a
mechanism for splitting dense chunks, and for merging a sparse chunk with its predecessor. The
main idea in the design of the split and merge lock-free mechanisms is the freezing of chunks. When
a chunk needs to be split or merged, it is first frozen. No insertions or deletions can be executed on

4

Entry with
key 100

Entry with
key 159

Entry with
key 123

H
E
A
D

Chunk
1

Chunk's
head

Entry with
key 5

Entry with
key 90

nextChunk

…

Chunk
2

Chunk's
head

nextChunk

…

counter:
6

counter:
10

Entry with
key 26

new, mergeBuddy,
freezeState

new, mergeBuddy,
freezeState

Figure 3: The list structure.

a frozen chunk. To split a frozen chunk, two new chunks are created and the entries of the frozen
chunk are copied into them. To merge a frozen chunk with a neighbor, the neighbor is first frozen,
and then one or two new chunks are allocated and the relevant entries from the two merging chunks
are copied into them. Details of the freezing mechanism appear in Section 5. We now review this
mechanism in order to allow the presentation of the list operations.

The freezing of a chunk comprises three phases:
Initiate Freeze: When a thread decides a chunk should be frozen, it starts setting the freeze bits
in all its entries one by one. During the time it takes to set all these bits, other threads may still
modify the entries not yet marked as frozen. During this phase, only part of the chunk is marked
as frozen, but this freezing procedure cannot be reversed, and frozen entries cannot be reused.
Stabilizing: Once all entries in a chunk are frozen, allocations and deletions can no longer be
executed. At this point, we link the non-deleted entries into a list. This includes entries that were
allocated, but not yet connected to the list. All entries that are marked as deleted are disconnected
from the list.
Recovery: The number of entries in the stabilized list is counted and a decision is made whether to
split this chunk or merge it with a neighbor. Sometimes, due to changes that happen during the first
phase, the frozen chunk becomes a good one that does not require a split or a join. Nevertheless,
the retired chunk is never resurrected. We always allocate a new chunk to replace it and copy the
appropriate values to the new chunk. Whatever action is decided upon (split, join, or copy chunk)
must be carried through.

Any thread that fails to insert or delete a key due to the progress of a freeze, joins in helping
the freezing of the chunk. However, threads that perform a search, continue to search in frozen
chunks with no interference.

4 The List Operations: Search, Insert and Delete

We now turn to describe the basic linked list operations. The high-level code for an insertion,
deletion, or search of a key is very simple and is presented in the Algorithm 1. We need to find
the appropriate chunk associated with the appropriate range of keys and then invoke the relevant
method on the returned chunk. Finally, we need to release the hazard pointers set by the FindChunk
method to allow future reclamation. The main challenge is in the work inside the chunk and the
handling of the freeze process, on which we elaborate below. More details on handling the higher
level chunks list appears in Appendix C.

Turning to the operations inside the chunks, the delete and search methods are close to the
previous design [10], except for the special treatment of the chunk bounds and the freeze status.

5

Algorithm 1 Search, Insert, and Delete – High Level Methods.
(a) BOOL Search (key, *data) {
1: chunk* chunk = FindChunk(key);
2: result = SearchInChunk(chunk, key, data);
3: hp5 = hp4 = hp3 = hp2 = null; return result;
}
(b) BOOL Insert (key, data) {
1: chunk* chunk = FindChunk(key);
2: result = InsertToChunk(chunk, key, data);
3: hp5 = hp4 = hp3 = hp2 = null; return result;
}
(c) BOOL Delete (key, data) {
1: chunk* chunk = FindChunk(key);
2: result = DeleteInChunk(chunk, key);
3: hp5 = hp4 = hp3 = hp2 = null; return result;
}

However, the insert method is quite different, because it must allocate an entry in a shared memory
(on the chunk), whereas previously, it was assumed that the insert allocates a local space for a new
entry and privately prepares it for insertion in the list.

For the purpose of handling the entries list in the chunk, we maintain five variables that are
global and appear in all the code below. These variables are global for each thread’s code, but are
not shared between threads, and all of them follow Michael’s design [10]. The first three per-thread
shared variables are (entry** prev), (entry* cur), and (entry* next). The other two are the two
pointers (entry** hp0) and (entry** hp1) that point to the two hazard pointers of the thread. All
other variables are local to the method that mentioned them.

4.1 The insert operation

The InsertToChunk method inserts a key with its associated data into a chunk. It first attempts
to find an available entry and allocate it with the given key. If no available entry exists, a split is
executed and the operation is retried. If an entry is obtained, the InsertEntry method is invoked
to insert the entry into the list. The insertion will fail if the key already exists in the chunk. In
this case InsertToChunk clears the entry to free it for future allocations.

The InsertToChunk code is presented in Algorithm 2. It starts by an attempt to find an available
entry for allocation. A failure occurs when all entries are in use and in this case a freeze is initiated.
The Freeze method gets the key and data as an input, and also an input indicating that it is
invoked by an insertion operation. This allows the Freeze method to try to insert the key to the
newly created chunk. When successful, it returns a null pointer to indicate the completion of the
insertion. It also sets a local variable result to indicate whether the completed insertion actually
inserted the key or it completed by finding that the key already existed in the list (which is also a
legitimate completion of the insertion operation). If the insertion is not completed by the Freeze
method, then it returns a pointer to the chunk on which the insertion should be retried.

Connecting the entry to the list is done by InsertEntry. If the entry gets allocated and linked

6

Algorithm 2 Insert a key and its associated data into a chunk
Bool InsertToChunk (chunk* chunk, key, data) {
1: current = AllocateEntry(chunk, key, data); // Find an available entry
2: while (current == null) { // No available entry. Freeze and try again
3: chunk = Freeze(chunk, key, data, insert, &result);
4: if (chunk == null) return result; // Freeze completed the insertion.
5: current = AllocateEntry(chunk, key, data); // Otherwise, retry allocation
6: }
7: returnCode = InsertEntry(chunk, current, key);
8: switch (returnCode) {
9: case success this:

10: IncCount(chunk); result = true; break; // Increments the entries’ counter in the chunk
11: case success other: // Entry was inserted by other thread due to help in freeze
12: result = true; break;
13: case existed: // This key exists in the list. Reclaim entry
14: if (ClearEntry(chunk, current)) // Attempt to clear the entry
15: result = false;
16: else // Failure to clear the entry implies that a freeze thread
17: result = true; // eventually inserts the entry
18: break;
19: } // end of switch
20: *hp0 = *hp1 = null return result; // Clear all hazard pointers and return
}

to the list, then the chunk counter is incremented only by the thread that linked the entry itself.
If the key already existed in the list, then ClearEntry attempts to clear the entry for future reuse.
However, a rare scenario may foil clearing of the entry. This happens when the other occurrence of
the key (which existed previously in the list) gets deleted before our entry gets cleared. Furthermore,
a freeze occurs, in which the semi-allocated entry gets linked by other threads into the new chunk’s
list. At this point, clearing this entry is avoided, and ClearEntry returns false. In such a scenario,
clearing the entry fails and the insert operation succeeds.

At the end of InsertToChunk, all hazard pointers are cleared and we return with a code speci-
fying if the insert was successful, or the key previously existed in the list.

The allocation of an available entry is executed using the AllocateEntry method, depicted in
Algorithm 3. An available entry contains ⊥ as a key and zeros otherwise. An available entry is
allocated by assigning the key and data values in the keyData word in a single atomic compare-
and-swap (CAS) that assumes this word has the ⊥ symbol and zeros in it. An entry whose keyData
has the freeze bit set cannot be allocated as it is not properly zeroed. Note also that once an entry
is allocated, all the information required for linking it to the list is available to all threads. Thus,
if a freeze starts, then all threads may create a stabilized list of the allocated entries in a chunk.
The AllocateEntry method searches for an available entry. If no free entry can be found, null is
returned.

Next, comes the InsertEntry method, which takes an allocated entry and attempts to link it to
the linked list. The InsertEntry code is presented in Algorithm 4. The input parameter entry is a

7

Algorithm 3 Entry allocation
entry* AllocateEntry(chunk* chunk, key, data) {
1: keyData = combine(key, data); // Combine into the structure of a keyData word
2: expecEnt = combine(⊥, 0);
3: foreach entry e // Traverse entries in chunk
4: if (e→keyData == expecEnt)
5: if (CAS(&(e→keyData), expecEnt, keyData)) return e; // Atomically try to allocate
6: return null; // No free entry was found
}

Algorithm 4 Connecting an allocated entry into the list
returnCode InsertEntry (chunk* chunk, entry* entry, key) {
1: while (true) {
2: savedNext = entry→next;
3: // Find insert location and pointers to previous and current entries
4: if (Find(chunk, key)) // This key existed in the list, cur is global initiated by Find
5: if (entry == cur) return success other; else return existed;
6: // If neighborhood is frozen, keep it frozen
7: if (isFrozen(savedNext)) markFrozen(cur); // cur will replace savedNext
8: if (isFrozen(cur)) markFrozen(entry); // entry will replace cur
9: // Attempt linking into the list

10: if (!CAS(&(entry→next), savedNext, cur)) continue; // Attempt setting next field
11: if (!CAS(prev, cur, entry)) continue; // Attempt linking, prev is global initiated by Find
12: return success this; // both CASes were successful
13: }
}

pointer to an entry that should be inserted. It is already allocated and initiated with key and data.
Before searching for the location to which to connect this entry, we memorize this entry’s

next pointer. Normally, this should be a null, but in the presence of concurrent executions of
InsertEntry (which may happen during a freeze), we must make sure later that the entry’s next
pointer was not modified before we atomically wrote it in Line 10. After saving the current next
pointer, we search for the entry’s location via the Find method. If the key already exists in the
list, InsertEntry checks whether the returned entry is the same as the one it is trying to insert (by
address comparison). The result determines the return code: either the key existed and we failed,
or the key was inserted, but not by the current thread. (This can happen during a freeze when
all threads attempt to stabilize the frozen list.) Otherwise, the key does not exist, and Find sets
the global variable cur with a pointer to the entry that should follow our entry in the list, and the
global variable prev with the pointer that should reference our entry. The Find method protects
the entries referenced by prev and cur with the hazard pointers hp1 and hp0, respectively. There is
no need to protect the newly allocated entry because it cannot be reclaimed by a different thread.

If any to-be-modified pointer is marked as frozen, we make sure that its replacement is marked
as frozen well. An allocation of an entry can never occur on a frozen entry. However, once the
allocation is successful, the new entry may freeze and still InsertEntry should connect it to the list.

8

Algorithm 5 The main freeze method.
chunk* Freeze(chunk* chunk, key, data, triggerType trigger, Bool* result)
{
1: CAS(&(chunk→freezeState), no freeze, internal freeze);
2: // At this point, the freeze state is either internal freeze or external freeze
3: MarkChunkFrozen(chunk);
4: StabilizeChunk(chunk);
5: if (chunk→freezeState == external freeze) {
6: // This chunk was in external freeze before Line 1 executed. Find the master chunk.
7: master = chunk→mergeBuddy;
8: // Fix the buddy’s mergeBuddy pointer.
9: masterOldBuddy = combine(null, internal freeze);

10: masterNewBuddy = combine(chunk, internal freeze);
11: CAS(&(master→mergeBuddy), masterOldBuddy, masterNewBuddy);
12: return FreezeRecovery(chunk→mergeBuddy, key, data, merge, chunk, trigger, result);
13: }
14: decision = FreezeDecision(chunk); // The freeze state is internal freeze
15: if (decision == merge) chunkMergePartner = FindMergeSlave(chunk);
16: return FreezeRecovery(chunk, key, data, decision, chunkMergePartner, trigger, result);
}

Finally, two CASs are used to link the entry to the list. Whenever a CAS fails, the insertion starts
from scratch on same chunk.

4.2 Delete and Search

The other two list operations, delete and search, are closer to previous work, but care is required
for these operations to work well with the freezing mechanism and the merge procedure. For lack
of space their description is relegated to Appendix B. The Find method, invoked by insertEntry,
is also specified there.

5 The Freeze Procedure

We now provide more details about the freeze procedure. The full description is presented in
Appendix A. The freezing process occurs when the number of entries in a chunk exceeds its
boundaries. At this point, splitting or merging happens by copying the relevant keys (and data) into
a newly allocated chunk (or chunks). This process comprises three phases: initiation, stabilization
and recovery.

The code for the Freeze method is presented in Algorithm 5. The input parameters are the
chunk that needs to be frozen, the key, the data, and the event that triggered the freeze: insert,
delete, enslave (if the freeze was called to prepare the chunk for merge with a neighboring
chunk), or none (if the freeze is called while clearing an entry). The freeze will attempt to execute
the insertion, deletion, or enslaving and will return a null pointer when successful. It will also set
an input boolean flag to indicate the return code of the relevant operation. When unsuccessful, it

9

will return a pointer to the new chunk on which the operation should be retried.
The Freeze method starts with an attempt to atomically change the freeze state from no freeze

to internal freeze. This freeze state of the chunk is normally no freeze and is switched to
internal freeze when a freeze process of this chunk begins. But it can also be external freeze
when a neighbor requested a freeze on this chunk to allow a merge between the two. Thus, an
external freeze can start even when no size violation is detected in this chunk.

Whether or not the modification succeeds, we know that the freeze state can no longer be
no freeze. It can be either internal freeze or external freeze. The Freeze method then
calls MarkChunkFrozen to mark each entry in the chunk as frozen and StabilizeChunk to finish
stabilizing the entries list in the chunk. At this point, the entries in the chunk cannot be modified
anymore. Freeze then checks if the freeze is external or internal.

An external freeze can occur when a freeze is concurrently executed on the next chunk, and it
has already enslaved the current chunk as its merge buddy. In this case, we cooperate with the joint
freeze and joint recovery. When the state of the freeze is external, then the current chunk must have
its mergeBuddy pointer already pointing to the chunk that initiated the merge, denoted the master
chunk. To finish this freeze, we make sure that the master chunk has its merge buddy properly
pointing back at the current chunk. The master chunk’s mergeBuddy pointer must be either null
or already pointing to the buddy we found. Thus it is enough to use one CAS command to verify
that it is not null. Finally, we execute the recovery phase on the master chunk and return its
output. We do not need to check the decision about the freeze of the buddy. It must be a merge.

If the freeze is internal, then we invoke FreezeDecision to see what should be done next (Line
14). If the decision is to merge, then we find the previous chunk and “enslave” it for a joint merge
using the FindMergeSlave method (specified in Appendix A). Finally, the FreezeRecovery method
is called to complete the freeze process. Next, we explain each of the stages. The full details
including the pseudo-code appear in Appendix A.

Marking the chunk as frozen. The MarkChunkFrozen method simply goes over the entries
one by one and marks each one as frozen. The setting of the freeze flags is atomic and it is retried
repeatedly until successful. By the end of this process all entries (including the free ones) are
marked as frozen.

Stabilizing the chunk. After all the entries in the chunk are marked as frozen, new entries
cannot be allocated and existing entries cannot be marked as deleted. However, the frozen chunk
may contain allocated entries that were not yet linked, and entries that were marked as deleted,
but which have not yet been disconnected and reclaimed. The StabilizeChunk method disconnects
all deleted entries and links all allocated ones. It uses the Find method to disconnect all entries
that are marked as deleted. Such entries do not need to be reclaimed (when marked as frozen), but
they should not be copied to the new chunk. Next, StabilizeChunk attempts to connect entries. It
goes over all entries and searches for ones that are disconnected, but neither reclaimed nor deleted.
Each such entry is linked to the list by invoking InsertEntry, which will only fail if the key already
exists in a different entry in the chunk’s list. In this case, this entry should indeed not be connected
to the stabilized list.

Reaching a decision. After stabilizing the chunk, everything is frozen, the list is completely
connected, and nothing changes in the chunk anymore. At this point, we need to decide whether or

10

not splitting or merging is required. To that end, a count is performed and a decision is made by
comparison to min and max. It may happen that the resulting count is higher than min and lower
than max, and then no operation is required. Nevertheless, the frozen chunk is never resurrected.
Instead, we copy the chunk to a new chunk in the (upcoming) recovery stage.

Making the recovery. Once a decision is reached, a recovery starts. The recovery procedure
allocates a chunk (or two) and copies the relevant information into the new chunk (or chunks). If a
merge is involved, the previous chunk in the list is first frozen (under an external freeze) and both
chunks bring entries for the merge. Several threads may perform the freeze procedure concurrently,
but all of them will make the same recovery decision about the freeze, as the frozen stabilized
chunk looks the same to all threads. A thread that performs the recovery creates a local chunk
(or chunks) into which it copies the relevant entries. At this point all threads create the same new
chunk (or chunks). But now, each thread performs the operation with which it initiated the freeze
on the new chunks. It can be an insert, delete, or enslave. Performing the operation is easy because
the new chunks are local to this thread and no race can occur. (Enslaving a chunk is simply done
by modifying its freeze state from no freeze to external freeze and registration of the merge
buddy.) But the success of making the local operation visible in the data structure is determined by
whether the thread succeeds in creating a link to its new chunks in the frozen chunk, as explained
next.

After creating the new chunks locally and executing the original operation on them, there is an
attempt to atomically insert the address of its local chunk into a dedicated pointer in the frozen
chunk (new). When two chunks are created, the second one is locally linked to the first one by the
nextChunk field. The nextChunk field of the last chunk points to null’ (different from null). If
the insertion is successful, then this thread has also completed the the operation it was performing
(insert, delete, or enslave). If the insertion is unsuccessful, then this means that a different thread
has already completed the installation of new chunks and this thread’s local new chunks will not
be used (i.e., can be reclaimed). In this case, the thread must try its operation again from scratch.

According to the number of (live) entries on the frozen chunk there are three ways to recover
from the freeze.

Case I: min< count < max. In this case, the required action is to allocate a new chunk and
copy all of the entries from the frozen chunk to the new chunk. Next we perform the insert, delete,
or enslave operation on the local new chunk and attempt to link it to the frozen one.

Case II: count == min. In this case we need to merge the frozen chunk with its previous
chunk. We assume that the previous chunk has already been frozen by an external freeze before the
recovery is executed, and that the freeze states in both chunks are properly set so that no thread
can interfere with the freeze process.

We start by checking the overall number of entries in these two chunks, to decide if the merged
entries will fit into one or two chunks. We then allocate a second new chunk, if needed, and
perform the (local) copy to the new chunk or chunks. When copying into two new chunks, we
split the entries evenly, and return the smallest key in the second chunk as the separating key. As
before, we perform the original operation that started the freeze and try to create a link from the
old chunk to the new chunk or chunks.

Case III: count == max. In this case we need to split the old chunk into two new chunks.
The basic operations of this case resemble those of the previous cases. We allocate two new chunks,
perform the split locally, perform the original operation, and attempt to link the new chunks to

11

the old one.

6 Conclusion

We have presented a chunking and freezing mechanisms that build a cache-conscious lock-free
linked list. Our list consists of chunks, each containing consecutive list entries. Thus, a traversal
of the list stays mostly within a chunk’s boundary (a virtual page or a cache line), and therefore,
the traversal enjoys a reduced number of page faults (or cache misses) compared to a traversal of
randomly allocated nodes, each containing a single entry. Maintaining a linked list in chunks is
often used in practice (e.g., [1, 5]) but a lock-free implementation of a cache-conscious linked list
has not been available heretofore. We believe that the building blocks of this list, i.e., the chunks
and the freeze operation, can be used for building additional data structures, such as lock-free hash
functions, and others.

References

[1] Unrolled Linked Lists, http://blogs.msdn.com/devdev/archive/2005/08/22/454887.aspx

[2] D. Dechev., P. Pirkelbauer., B. Stroustrup. A Lock-Free Dynamically Resizable Array,
OPODIS, 2006

[3] M. Fomitchev, and E. Rupert. Lock-free linked lists and skip lists, In Proc. PODC, 2004.

[4] K. Fraser., Practical lock-freedom, Technical Report UCAM-CL-TR-579, University of Cam-
bridge, Computer Laboratory, Feb. 2004.

[5] Frias, L., Petit, J., and Roura, S. 2009. Lists revisited: Cache-conscious STL lists. J. Exp.
Algorithmics 14 (Dec. 2009), 3.5-3.27.

[6] T.L. Harris., A pragmatic implementation of non-blocking linked-lists, In Proc. PODC, 2001.

[7] M. Herlihy., Wait-free synchronization. TOPLAS, 1991.

[8] M.M. Michael., High Performance Dynamic Lock-Free Hash Tables and List-Based Sets, In
Proc. SPAA, 2002.

[9] M. M. Michael., Safe memory reclamation for dynamic lock-free objects using atomic reads and
writes, In Proc. PODC, 2002.

[10] M. M. Michael., Hazard pointers: Safe memory reclamation for lock-free objects, TPDS, June
2004.

[11] Maurice Herlihy and Nir Shavit, The art of multiprocessor programming, Morgan Kaufman
2008

[12] J. D. Valois., Lock-free linked lists using compare-and-swap, In Proc. PODC, 1995.

[13] R. K. Treiber., Systems programming: Coping with parallelism., Research report RJ 5118, IBM
Almaden Research Center, 1986.

12

Algorithm 6 Freezing all entries in a chunk
void MarkChunkFrozen(chunk* chunk) {
1: foreach entry e {
2: savedWord = e→next;
3: while (!isFrozen(savedWord)) { // Loop till the next pointer is frozen
4: CAS(&(e→next), savedWord, markFrozen(savedWord));
5: savedWord = e→next; // Reread from shared memory
6: }
7: savedWord = e→keyData;
8: while (!isFrozen(savedWord)) { // Loop till the keyData word is frozen
9: CAS(&(e→keyData), savedWord, markFrozen(savedWord));

10: savedWord = e→keyData; // Reread from shared memory
11: }
12: } // end of foreach
13: return;
}

A The Freeze Procedure

In this appendix we provide the entire freeze procedure. To save the reader from going back and
forth between the main body of the paper and this appendix, we include everything here, repeating
the explanations of Section 5 and adding all the pseudo-code and details.

The freezing process occurs when the number of entries in a chunk exceeds its boundaries.
At this point, splitting or merging happens by copying the relevant keys (and data) into a newly
allocated chunk (or chunks). This process comprises three phases: initiation, stabilization and
recovery.

A.1 The initiation of a freeze

A thread will initiate a freeze when the min or max are exceeded or when there is an external
request to freeze the current chunk in order for it to serve in a merge procedure with a neighbor.
Once a freeze process has started, other threads may join and help the freeze since they need the
resulting chunks to proceed in their activities. We distinguish between an external freeze (imposed
upon a chunk by a sparse neighbor) and a regular freeze, using the freeze state field in the chunk.
The main goal is to avoid the possibility that one thread plans to use this chunk for merging with
a small neighbor, while another thread is splitting it because it is full. We let one type of freeze
terminate before executing a different one.

A freeze starts by modifying the freeze state of a chunk from no freeze to internal freeze
or external freeze. The location of the freeze state field is in the three LSBs of the merge
buddy pointer (see Figure 2). In the discussion below we assume we are dealing with an internal
freeze. An external freeze is discussed separately in Section A.4.

After changing the chunk’s state, the initiation invokes MarkChunkFrozen, which goes through
the chunk’s entries one by one and marks them as frozen by setting the freeze bit first on the
nextEntry word and then on the keyData word. The setting of these flags is atomic and it is
retried repeatedly until successful. By the end of this process all entries (including the free ones)

13

Algorithm 7 Freeze stabilization.
void StabilizeChunk(chunk* chunk) {
1: maxKey = ∞;
2: Find(chunk, maxKey); // Implicitly remove deleted entries
3: foreach entry e {
4: key = e→key; eNext = e→next;
5: if ((key != ⊥) && (!isDeleted(eNext))) // This entry is allocated and not deleted
6: if (!Find(chunk, key)) InsertEntry(chunk, e, key); // This key is not yet in the list
7: } // end of foreach
8: return;
}

are marked as frozen. The freeze bit of the head entry is set last and at this point in time we
consider the initiation phase to be completed. The pseudo code of MarkChunkFrozen is presented
in Algorithm 6.

A.2 The stabilization phase

After all the entries in the chunk are marked as frozen, new entries cannot be allocated and
existing entries cannot be marked as deleted. However, the frozen chunk may contain allocated
entries that were not yet linked, and entries that were marked as deleted, but which have not yet
been disconnected and reclaimed. The stabilization operation disconnects all deleted entries and
links all allocated ones. The pseudo-code of the StabilizeChunk method appears in Algorithm 7. It
starts by running Find on the maximal possible key value. This is done because the Find method
(described in Appendix B.1) always disconnects all entries that are marked as deleted (even when
frozen). Such entries do not need to be reclaimed (when marked as frozen), but they should not
be copied to the new chunk. Next, StabilizeChunk attempts to connect entries. It goes over all
entries and searches for ones that are disconnected, but neither reclaimed nor deleted. Each such
entry is linked to the list by invoking InsertEntry, which will only fail if the key already exists in
a different entry in the chunk’s list. In this case, this entry should indeed not be connected to the
stabilized list.

A.3 The decision and the recovery

After stabilizing the chunk, everything is frozen, the list is completely connected, and nothing
changes in the chunk anymore. At this point, we need to decide whether or not splitting or merging
is required. Recall that the decision to freeze is initiated in the presence of many concurrent updates.
It is possible that one thread could not find an entry to allocate and initiated a freeze for the purpose
of splitting the chunk, but many other threads deleted entries concurrently and when the chunk
actually stabilized, there was no need to split. There may even be a need for a merge. Thus, we
make the decision on which operation to execute only after the chunk has stabilized and cannot
change anymore.

At this point, we count the number of entries in the frozen chunk, and decide if a split or a
merge is required according to the count. If the resulting count equals min we run a merge, and
if it equals max, we run a split (in the recovery phase). The resulting count can never exceed

14

Algorithm 8 Determining the freeze action.
recovType FreezeDecision (chunk* chunk) {
1: entry* e = chunk→head→next; int cnt = 0;
2: while (clearFrozen(e) != NULL) { cnt++; e = e→next; } // Going over the chunk’s list
3: if (cnt == min) return merge; if (cnt == max) return split; return copy;
}

the bounds, because there is no space to allocate more than max entries in the chunk, and since
the chunk counter that is maintained during the run holds a lower bound on the actual number
of entries and can never reach a value below min. If the resulting count is higher than min and
lower than max, then no operation is required. Nevertheless, the frozen chunk is never resurrected.
Otherwise, correctness cannot be guaranteed when a long-sleeping thread wakes to find a chunk
that was resurrected. Instead, we copy the chunk to a new chunk in the (upcoming) recovery stage.

The FreezeDecision method is presented in Algorithm 8. It computes the number of entries and
returns the recovery code: split, merge, or copy.

The recovery procedure allocates a chunk (or two) and copies the relevant information into
the new chunk (or chunks). If a merge is involved, the previous chunk in the list is first frozen
(externally) and both chunks bring entries for the merge. Several threads may perform the freeze
procedure concurrently, but all of them will make the same recovery decision about the freeze, as
the frozen stabilized chunk looks the same to all threads. A thread that performs the recovery
creates a local chunk into which it copies the relevant entries. At this point all threads create the
same new chunk (or chunks). But now, each thread performs the operation with which it initiated
the freeze on the new chunks. It can be an insert, delete, or enslave. Performing the operation is
easy because the new chunks are local to this thread and no race can occur. (Enslaving a chunk is
simply done by modifying its freeze state from no freeze to external freeze and registration
of the merge buddy.) But the success of making the local operation visible in the data structure
is determined by whether the thread succeeds in creating a link to its new chunks in the frozen
chunk, as explained next.

After creating the new chunks locally and executing the original operation on them, there is an
attempt to atomically insert the address of its local chunk into a dedicated pointer in the frozen
chunk (new). When two chunks are created, the second one is locally linked to the first one by the
nextChunk field. The nextChunk field of the last chunk points to null’ (different from null). If
the insertion is successful, then this thread has also completed the the operation it was performing
(insert, delete, or enslave). If the insertion is unsuccessful, then this means that a different thread
has already completed the installation of new chunks and this thread’s local new chunks will not
be used (i.e., can be reclaimed). In this case, the thread must try its operation again from scratch.

The code for the recovery is presented in Algorithm 9. If a merge occurs, the merging chunk is
supplied as a parameter. According to the number of (live) entries on the frozen chunk there are
three ways to recover from the freeze.

Case I: min< count < max. In this case, the required action is to allocate a new chunk and
copy all of the entries that reside on the frozen chunk’s list to the new chunk (which is only locally
visible and requires no synchronization). We do not specify the copying routine (in this case, as
well as in the other cases) since the copy is from a frozen chunk that does not change, to a local
chunk. This means that no concurrency is involved and the implementation is simple. The new

15

chunk becomes the replacement of the old chunk when the pointer new in the old chunk points to
it. An upper-level routine that handles the chunked list ListUpdate is then invoked to replace the
frozen chunk with the chunk that is referenced by new. The new chunk that holds the input key
(after the freeze is completed) is then returned.

Case II: count == min. In this case we need to merge the old chunk with its previous chunk
supplied through mergeChunk. We assume that the supplied chunk has already been frozen by
an external freeze before the recovery is executed. Finally, we assume that the freeze states are
properly set to internal on the old chunk and external on the previous chunk (so that no thread
can interfere with the freeze process), and the mergeBuddy pointers on these two chunks point to
each other.

Algorithm 9 The freeze recovery.
chunk* FreezeRecovery(chunk* oldChunk, key, input, recovType, chunk*
mergeChunk, triggerType trigger, Bool* result) {
1: retChunk = null; newChunk2 = null; newChunk1 = Allocate(); // Allocate a new chunk
2: newChunk1→nextChunk = null’;
3: switch (recovType) {
4: case copy:
5: copyToOneChunk(oldChunk, newChunk1); break;
6: case merge:
7: if ((getEntrNum(oldChunk)+getEntrNum(mergeChunk))≥max) {
8: // The two neighboring old chunks will be merged into two new chunks
9: newChunk2 = Allocate(); // Allocate a second new chunk

10: newChunk1→nextChunk = newChunk2; // Connect two chunks together
11: newChunk2→nextChunk = null’;
12: separatKey=mergeToTwoChunks(oldChunk,mergeChunk,newChunk1,newChunk2);
13: } else mergeToOneChunk(oldChunk,mergeChunk,newChunk1); // Merge to single chunk
14: break;
15: case split:
16: newChunk2 = Allocate(); // Allocate a second new chunk
17: newChunk1→nextChunk = newChunk2; // Connect two chunks together
18: newChunk2→nextChunk = null’;
19: separatKey = splitIntoTwoChunks(oldChunk, newChunk1, newChunk2); break;
20: } // end of switch
21: // Perform the operation with which the freeze was initiated
22: HelpInFreezeRecovery(newChunk1, newChunk2, key, separatKey, input, trigger);
23: // Try to create a link to the first new chunk in the old chunk.
24: if (!CAS(&(oldChunk→new), null, newChunk1)) {
25: RetireChunk(newChunk1); if (newChunk2) RetireChunk(newChunk2);
26: // Determine in which of the new chunks the key is located.
27: if (key<separatKey) retChunk=oldChunk→new; else retChunk=FindChunk(key);
28: } else { retChunk = null; }
29: ListUpdate(recovType, key, oldChunk); // User defined function
30: return retChunk;
}

16

Algorithm 10 Perform the operation with which the freeze was initiated.
chunk* HelpInFreezeRecovery(chunk* newChunk1, chunk* newChunk2, key, sepa-
ratKey, input, triggerType trigger) {
1: switch (trigger) {
2: case delete: // If key will be found, decrement counter has to succeed
3: *result = DeleteInChunk(newChunk1, key);
4: if (newChunk2 != null) *result = *result ‖ DeleteInChunk(newChunk2, key);
5: break;
6: case insert: // input should be interpreted as data to insert with the key
7: if ((newChunk2!=null) && (key<separatKey))
8: result = InsertToChunk(newChunk2, key, input);
9: else *result = InsertToChunk(newChunk1, key, input);

10: break;
11: case enslave: // input should be interpreted as pointer to master trying to enslave
12: if (newChunk2 != null)
13: newChunk2→mergeBuddy = combine(input, external freeze);
14: else newChunk1→mergeBuddy = combine(input, external freeze);
15: } // end of switch
}

We start by checking the overall number of entries in these two chunks, to decide if the merged
entries will fit into one of two chunks. We then allocate a second new chunk, if needed, and perform
the (local) copy to the new chunk or chunks. When copying into two new chunks, we split the entries
evenly, and return the smallest key in the second chunk as the separating key. As before, we try
to create a link from the old chunk to the new chunk or chunks. Next, the new chunk that holds
the input key is determined according to the separating key, and finally, the ListUpdate method is
called to replace the frozen chunk in the list with the two new chunks. This completes the recovery
for the merge case.

Case III: count == max. In this case we need to split the old chunk into two new chunks.
The basic operations of this case resemble those of the previous cases. We allocate a new chunk,
perform the split locally, attempt to link the new chunks to the old one, update the list, and return
the chunk holding the key.

At Algorithm 10 we present HelpInFreezeRecovery method that is invoke in order to try and
accomplish the activity that initiated the freeze as part of the freeze. This is needed in order to
avoid loop of freezes of chunk where no threads are making progress.

A.4 Managing the freeze activities

The code for the Freeze method is presented in Algorithm 5 and here in Algorithm 11. The
input parameters are the chunk that needs to be frozen, the key, the data, and the event that
triggered the freeze: insert, delete, enslave (if the freeze was called to prepare the chunk for
merge with a neighboring chunk), or none (if the freeze is called while clearing an entry). The
freeze will attempt to execute the insertion, deletion, or enslaving and will return a null pointer
when successful. It will also set a input boolean flag to indicate the return code of the relevant
operation. When unsuccessful, it will return a pointer to the new chunk on which the operation

17

Algorithm 11 The main freeze method.
chunk* Freeze(chunk* chunk, key, data, triggerType trigger, Bool* result)
{
1: CAS(&(chunk→freezeState), no freeze, internal freeze);
2: // At this point, the freeze state is either internal freeze or external freeze
3: MarkChunkFrozen(chunk);
4: StabilizeChunk(chunk);
5: if (chunk→freezeState == external freeze) {
6: // This chunk was in external freeze before Line 1 executed. Find the master chunk.
7: master = chunk→mergeBuddy;
8: // Fix the buddy’s mergeBuddy pointer.
9: masterExpected = combine(null, internal freeze);

10: masterNew = combine(chunk, internal freeze);
11: CAS(&(master→mergeBuddy), masterExpected, masterNew);
12: return FreezeRecovery(chunk→mergeBuddy, key, data, merge, chunk, trigger, result);
13: }
14: decision = FreezeDecision(chunk); // The freeze state is internal freeze
15: if (decision == merge) chunkMergePartner = FindMergeSlave(chunk);
16: return FreezeRecovery(chunk, key, data, decision, chunkMergePartner, trigger, result);
}

should be retried.
The Freeze method starts with an attempt to atomically change the freeze state from no freeze

to internal freeze. Whether or not the modification succeeds, we know that the freeze state can
no longer be no freeze. It can be either internal freeze or external freeze. The Freeze
method then calls MarkChunkFrozen to mark each entry in the chunk as frozen and StabilizeChunk
to finish stabilizing the entries list in the chunk. At this point, the entries in the chunk cannot be
modified anymore. Freeze then checks if the freeze is external or internal.

An external freeze can occur when a freeze is concurrently executed on the next chunk, and it
has already enslaved the current chunk as its merge buddy. In this case, we cooperate with the joint
freeze and joint recovery. When the state of the freeze is external, then the current chunk must have
its mergeBuddy pointer already pointing to the chunk that initiated the merge, denoted the master
chunk. To finish this freeze, we make sure that the master chunk has its merge buddy properly
pointing back at the current chunk. The master chunk’s mergeBuddy pointer must be either null
or already pointing to the buddy we found. Thus it is enough to use one CAS command to verify
that it is not null. Finally, we execute the recovery phase on the master chunk and return its
output. We do not need to check the decision about the freeze of the buddy. It must be a merge.

If the freeze is internal, then we invoke FreezeDecision to see what should be done next (Line
14). If the decision is to merge, then we find the previous chunk and “enslave” it for a joint merge
using the FindMergeSlave method (explained below). Finally, the FreezeRecovery method is called
to complete the freeze process.

Let us now explain the FindMergeSlave method, which is presented in Algorithm 12. This
method finds the previous chunk, sets its freeze state and mergeBuddy pointer, initiates its freeze,
stabilizes it, and sets the current mergeBuddy to point at the obtained chunk. This method starts

18

Algorithm 12 Setting a chunk partner for a merge.
chunk* FindMergeSlave(chunk* master) {
1: while (true) { // Find a slave and set its freeze state & mergeBuddy pointer
2: slave = listFindPrevious(master); // upper-level funciton returning previous chunk.
3: // Set slave’s mergeBuddy pointer and freeze state (both reside on the same word).
4: expected = combine(null, no freeze);
5: new = combine(master, external freeze);
6: if (!CAS(&(slave→mergeBuddy), expected, new)) {
7: if (slave→mergeBuddy == new) break; // Someone else has set it right.
8: Freeze(chunk, 0, master, enslave, &result); // This slave is under a different freeze

activity, help.
9: } else break;

10: } // end of while
11: MarkChunkFrozen(slave);
12: StabilizeChunk(slave);
13: // slave is externally frozen - make sure the master’s mergeBuddy points to the slave.
14: expected = combine(null, internal freeze); // Combine two values in one word
15: new = combine(slave, internal freeze);
16: CAS(&(master→mergeBuddy), expected, new);
17: return slave;
}

by invoking the (upper-level) listFindPrevious method in order to find the chunk that precedes the
current chunk. Sometimes, because of concurrent activity, listFindPrevious does not find its input
chunk in the list (since it was already frozen and disconnected from the list of chunks). In this case,
it cannot identify the previous chunk, and instead, it just returns the mergBuddy pointer, which
properly points to its slave for the merge (that was already completed in a concurrent manner).

We denote the previous chunk a slave as it joins the merge initiated by the input chunk, which is
the master. After identifying the slave, we attempt to atomically modify its freeze state and merge
buddy to indicate an external freeze joint with the master chunk. Once the slave is marked with
an external freeze, the two chunks are destined for a joint freeze and no chunk can come between
them. (New chunks are only added as a result of a split.) If the change in the slave state fails,
a search for a new slave is attempted, after making sure that the current one is out of the way,
by participating in completing its current freeze. Next, we ensure that the master’s chunkBuddy
pointer points to the slave and then a pointer to the slave is returned to the caller.

B Additional Chunk-level Methods

Here we present operations that did not fit into the limited-space main body of the paper.

B.1 The search operation

The search operation, implemented in the searchInChunk method of Algorithm 13, uses the Find
method, described hereafter. The searchInChunk method starts by call for Find, which protects its

19

Algorithm 13 Searching for data associated with the key
Bool SearchInChunk (chunk* chunk, key, *data) {
1: if (Find(chunk, key)) { data = cur→data; result = true; } else result = false;
2: *hp0 = *hp1 = null; return result;
}

output with hazard pointers. The SearchInChunk method finishes by clearing the hazard pointers
and returning.

Finding the location in the chunk’s list: the Find method. We now present the Find
method, invoked by several other methods. The pseudo-code for Find appears in Algorithm 14.
This method finds the location of a given key in the list. It returns false if the key does not exist
in the list, or trueotherwise. It also sets in a global (indirect) pointer **prev to the entry that
contains the highest key value between all keys smaller than the input key, and in a global pointer
*cur, the entry with the minimal key value that is larger or equal to the input key. Finally, if the
key is found, the entry that follows cur is returned in a global pointer *next. Find is very similar
to the Find method presented in [10] up to changes needed for dealing with the freeze bit.

The Find method protects the entries that it uses and returns using hazard pointers so they
are not being concurrently reclaimed. This holds upon return from Find so the calling method
may assume that the referenced entries could not be reclaimed and re-allocated, until the calling
method clears the thread’s hazard pointers.

If the traversal of Find finds an entry that is marked for deletion (i.e., the delete bit is set on
its next pointer), then it disconnects the entry from the list and attempts to recycle it. Recycling
is executed via RetireEntry, which is explained later in Section B.2. Disconnecting and recycling a
deleted entry is a service of Find to the structure of the list that will be assumed in the rest of this
paper. The key of a deleted entry is not checked, and cannot influence the search for the input key.

Any failing CAS causes a restart of the search. Also, in general, whenever we replace a pointer
by another, e.g., in Line 8, we first make sure that if the old pointer was marked as frozen, then the
replacement pointer is marked as frozen as well. This way the freeze bits of an entry are preserved
everywhere.

B.2 The delete operation

The deletion algorithm (inside a chunk) is similar to the well-known one for lock-free linked lists
[6, 10]. The deletion operation is partitioned into a logical deletion, which marks the entry as
deleted by setting the delete bit (LSB) in the entry’s next pointer. Next, the physical deletion
disconnects the entry from the list and reclaims its space. The difference between our deletion
method and the standard one is the need to check if the chunk’s counter has reached the lower
threshold min and call Freeze when it does. Additionally, we do not let the delete bit be set on
a frozen entry. A delete can only occur before an entry gets frozen. Notice that Freeze can also
help this deletion and we check if help happened any time Freeze is invoked. Finally, we need to
maintain the counter of entries allocated in the chunk. In order to make sure that the counter
holds a lower bound on the number of entries in the presence of concurrent updates, we decrement
the counter before we delete the entry. If the delete fails, we increment the counter to account for
the failure. A failure to decrement the counter can only happen when the lower bound has been

20

Algorithm 14 Find the location of an entry in the chunk’s list
Bool Find (chunk* chunk, key) {
1: try again: prev = &(chunk→head); // Restart point
2: cur = *prev;
3: while (clearFrozen(cur) != null) { // Ignore freeze bit when comparing to null
4: *hp0 = cur; // Progress to an unprotected entry
5: if (*prev != cur) goto try again; // Validate progress after protecting
6: next = cur→next;
7: if (isDeleted(next)) { // Current entry is marked deleted
8: if (isFrozen(cur)) markFrozen(next); // next replaces cur; save freeze bit
9: // Disconnect current: prev gets the value of next with the delete bit cleared

10: if (!CAS(prev, cur, clearDeleted(next))) goto try again;
11: RetireEntry(cur); // CAS succeeded - try to reclaim
12: cur = clearDeleted(next);
13: } else {
14: ckey = cur→key;
15: if (*prev != cur) goto try again; // Check new insertion between them or new deletion
16: if (ckey ≥ key) return (ckey == key);
17: prev = &(cur→next);
18: tmp = hp0; hp0 = hp1; hp1 = tmp; // All private. hp0, hp1 are ptrs to hazard ptrs
19: cur = next;
20: }
21: }
22: return false;
}

reached. In this case, we initiate a freeze, which returns with a new chunk (containing the range of
values that includes our input key). The decrement attempt is then repeated and this loop repeats
until the decrement succeeds on the current chunk.

The deletion algorithm (inside a chunk) is presented in Algorithm 15. It starts by decrementing
the counter, Find is invoked to find the entry holding the key. If the key does not exist in the
list, then the counter is incremented, hazard pointers zeroed and false is returned to the caller.
Otherwise, we attempt a CAS to mark the entry as deleted. The CAS assumes that the freeze
bit and the delete bit are not set at the deletion time (for proper counter measurement, we should
know exactly who sets the delete bit). If the CAS fails due to a freeze bit, then a freeze action must
be executed, then either freeze succeeded to promote this deletion or the delete should restart on
the newly obtained chunk. Otherwise, the CAS failed due to some other thread deleting the entry,
or a pointer modification. In this case, we should search for the entry again before deleting it. The
Find method will not return this entry again if it has already been deleted. Furthermore, it will
disconnect it from the list and reclaim it before returning.

After marking the entry as deleted, we attempt to disconnect it from the list. If the freeze bit
is set, we keep it set. If the disconnect succeeds, we reclaim the entry via RetireEntry. Otherwise,
we call Find, which repeatedly attempts to disconnect an entry that is marked deleted, until the
disconnection is achieved. Finally, we clear the hazard pointers that are set by the Find method,

21

Algorithm 15 The pseudo-code of deletion of an entry in a chunk
Bool DeleteInChunk (chunk* chunk, key) {
1: try again:
2: while (!DecCount(chunk)) { //If too few entries in chunk; call freeze
3: chunk = Freeze(chunk, key, 0, delete, &result);
4: if (chunk == null) return result; // If Freeze succeeded to proceed with deletion, return
5: } // end of decrement counter while
6: while (true) {
7: if (!Find(chunk, key)) {
8: IncCount(chunk); *hp0 = *hp1 = null; return false; // No such entry was found
9: }

10: // Mark entry as deleted, assume entry is not deleted or frozen
11: clearedNext = clearFrozen(clearDeleted(next));
12: if (!CAS(&(cur→next), clearedNext, markDeleted(clearedNext))) {
13: if (isFrozen(cur→next)) { // CAS failed due to freeze
14: IncCount(chunk); chunk = Freeze(chunk, key, 0, delete, &result);
15: if (chunk == null) return result; // If Freeze succeeded to proceed with deletion,

return
16: goto try again;
17: } else continue;
18: }
19: // Remove entry
20: if (isFrozen(cur)) markFrozen(next); // next replaces cur; retain freeze bit
21: if (CAS(prev, cur, next)) RetireEntry(addr); else Find(chunk, key);
22: *hp0 = *hp1 = null; return true;
23: }
}

to allow future reclamation of the involved entries.

Entry reclamation Special care is required for reclaiming an entry in the presence of hazard
pointers. First, it must be clear that the reclamation is not being executed on an entry that has a
hazard pointer, and second, if an entry cannot be reclaimed right now, it will be properly scheduled
for future reclamation (in a non-blocking manner). We follow the scheme presented by Michael in
[10]. In this scheme, an entry can be reclaimed only by the very same thread that disconnects it
from the list. There can only be one such thread, as the disconnection is executed with a CAS.

Each thread has its own list of to-be-retired entries. After successfully disconnecting an entry,
the thread invokes RetireEntry (depicted in Algorithm 16), which pushes the given entry into the
list of entries waiting to be reclaimed, and then attempts to reclaim all entries in the list via the
HandleReclamationBuffer method. The HandleReclamationBuffer method compares the entries in
the to-be-retired list with the ones in the hazard pointers array (HPA) and reclaims the entries that
do not appear in the HPA. Our adaptation to this scheme does not reclaim entries marked as frozen
even when no hazard pointer points to them. The HandleReclamationBuffer method is invoked on
every RetireEntry call, in order to make sure that an entry is reclaimed as soon as possible, when

22

Algorithm 16 The reclamation code employs Michael’s reclamation scheme
void RetireEntry (entry* entry) {
1: addToRetList(entry); // Add the entry to the (local) list of to-be-retired entries
2: HandleReclamationBuffer(); // Scan the list and reclaim the entries if possible
}
void HandleReclamationBuffer() {
1: plist = initializeList(); // Local list for recording current hazard pointers
2: hprec = getHPhead(); // Obtain head of hazard pointers array (HPA)
3: // Stage 1: Save current hazard pointers in plist (locally)
4: while (hprec != null) {
5: for (i=0; i<2; ++i) { // 2 hazard pointers per thread
6: hptr = hprec→HP[i];
7: if (hptr != null) insertList(plist, hptr);
8: }
9: hprec = getNextHPrecord(hprec);

10: }
11: // Stage 2: Reclaim to-be-retired entries that are not protected by a hazard pointer
12: tmplist = popAllRetList(); // Copy all local to-be-retired entires and clear RetList
13: entry = popList(tmplist);
14: while (entry != null) {
15: if (lookUp(plist, entry)) pushRetList(entry); // Entry protected, push back to RetList
16: else { if (!isFrozen(entry)) ClearEntry(entry); } // Reclaim unprotected (non-frozen)

entry
17: entry = popList(tmplist);
18: }
19: freeList(plist);
}

no more hazard pointers point to it. Michael’s reclamation scheme, slightly modified to support
our notations, is depicted in Algorithm 16. For further discussion on the reclamation scheme we
refer the reader to the RetireNode method and the Scan method in [10].

The actual clearing of an entry in our list means zeroing the entry and assigning ⊥ as key’s
value. This is executed in the ClearEntry method depicted in Algorithm 17. This method is invoked
either in case of a trial to insert a key that already existed in the chunk’s list (InsertEntry, Line 14)
or by HandleReclamationBuffer when a deleted and disconnected entry is found to be safe for reuse
(in Line 16 there). We do not reclaim an entry when it is found frozen, because this reclamation is
not needed anymore, and it complicates the code to reclaim it.

The entry clearance is executed by two CAS operations. When the keyData word is cleared,
the entry might immediately be re-allocated. Therefore, we first zero the nextEntry word, and
only then put ⊥ on the keyData word. An entry that is marked frozen is not reclaimed and this
is ensured by the atomic CAS. We claim that a CAS can only fail when the entry’s freeze bit is
marked. If the chunk is not being frozen, a cleared entry is handled only by the current thread.
The reason is that the entry is already disconnected from the list and no other thread has a hazard
pointer to it, neither can it find the entry at this point. Furthermore, only one thread holds it in

23

Algorithm 17 The pseudo-code for clearing an entry and reclaiming it’s space/
Bool ClearEntry (chunk* chunk, entry* entry) {
1: savedKeyData = clearFrozen(entry→keyData);
2: savedNext = clearFrozen(entry→next);
3: newKeyData = combine(⊥, 0);
4: if (CAS(&(entry→next), savedNext, 0))
5: if (CAS(&(entry→keyData), savedKeyData, newKeyData))
6: return true; // Both CASes were successful
7: Freeze(chunk, 0, 0, none, &result); // A CAS failure indicates a freeze. Help freeze before

proceeding.
8: if (Find(chunk, entry→key)) // Check whether the entry to be reclaimed was linked back

by the freeze
9: if (entry == cur) return false; // cur is global initiated by Find

10: return true;
}

his to-be-retired list. Therefore, the clearing can only fail when a freeze process is executing.
When ClearEntry is called from HandleReclamationBuffer the freeze cannot resurrect it. The

entry is deleted, and after executing the freeze procedure to make sure that it is completed, we
know that the entry cannot exist in the newly created chunk anymore. However, when ClearEntry
is called by InsertEntry, the entry is not deleted and a freeze process may resurrect it (as discussed
in the description of InsertEntry). In this case, ClearEntry discovers the resurrection and returns
false.

B.3 Counter Functionalities

Here we present the lock-free counter functionalities we use in the InsertInChunk and DeleteInChunk
methods.

It may happen that a thread fails or stops just before or after updating the counter, thus an
accurate count for the number of entries in the chunk cannot be expected (in a lock-free execution).
Our counter only ensures that the counter value is always less or equal to the real number of entries
in the chunk’s list, which is what we actually need for keeping the number of entries in the chunk
between min and max. Recall that max is the number of entries in a chunk, and so even if the
counter did not exist, no more than max entries could be allocated on a chunk. In order to make
sure that the number of entries does not go below min, we maintain the counter as a lower bound
on the actual number of entries. If the counter drops below min, we try to merge the chunk with
a neighboring chunk. Since the counter is a lower bound on the actual entry number, we may find
that no merging is really needed after the freeze.

To ensure that the counter is a lower bound on the number of entries, we apply a couple of rules.
First, the counter is only incremented after an entry is successfully allocated. This means that the
counter does not supersede the number of entries in the chunk (max). Second, we decrement
the counter before we delete an entry. So that if the executing thread halts between the counter
decrement and the deletion, we know that the counter is smaller than the actual number of entries.
It is never larger than it.

The code for handling the counter appears in Algorithm 18. The increment is straightforward

24

Algorithm 18 The increment and the decrement of the chunk’s counter
void IncCount (chunk* chunk) {
1: while (TRUE) {
2: counter = chunk→counter;
3: if (CAS(&(chunk→counter),counter,counter+1)) return;
4: }
}
Bool DecCount (chunk* chunk) {
1: while (TRUE) {
2: counter = chunk→counter;
3: if (counter == MIN) return FALSE; // comparison with minimal, MIN-1 illegal
4: if (CAS(&(chunk→counter),counter,counter-1)) return TRUE;
5: }
}

and it always succeeds. The decrement method returns a failure if an attempt is made to reduce
the counter below the min value.

C The Upper-Level List Operations

Let us now specify the upper-level list handling. When operations, such as split or merge, are
executed on a chunk, they may sometimes cause a split or a merge of chunks. In this case, the list
of chunks needs to be updated. Note that the list of chunks need not handle inserts or deletes. It
only handles splits and merges that follow inserts and deletes of entries inside the chunks.

We start by presenting the ListUpdate() method. This method is called after a chunk has
finished the freeze and recovery phases, at Line 29 of FreezeRecovery() method. The ListUpdate()
gets as input the recovery type (split, merge, or copy), an (arbitrary) key located or should be
located on the frozen chunk, and a pointer to the frozen chunk. At this point, the list on the frozen
chunk is stabilized and cannot be changed anymore. The new field in the frozen chunk points to a
new chunk that contains some of the entries copied from the frozen chunk, and, when a second new
chunk is required (for split or a merge that ended up with two new chunks), then the nextChunk
field of first new chunk points to the new chunk with the higher key values, copied from the frozen
chunk. We also make the new chunks sequence to be finished with a special nullpointer - null’,
in order to distinguish between nullthat comes at the end of the upper-level list. This is needed
in order to synchronize the concurrent insertions of the chunks into upper-level list.

In addition, the least-significant bit of the nextChunk pointer holds a swapped bit, which is
very similar to the delete bit that marks the logical delete of an entry. The swapped bit, when set,
signifies that the chunk is about to be swapped with new chunks, and its nextChunk pointer cannot
be modified anymore.

The code for ListUpdate() is presented in Algorithm 19. First, we memorize the value of
nextChunk field of last new chunk, to be used later. After, we search for the frozen chunk by
invoking the FindChunk() method on the input key (in the range of the old chunk). If FindChunk()
returns a chunk different from the frozen chunk, then it means that some other thread has already
removed the frozen chunk from the list of chunks, and we can just return. The search for a chunk

25

Algorithm 19 Update chunk list at the end of a freeze.
void ListUpdate(recovType, key, chunk* chunk) {
1: while (true) {
2: if (chunk→new→nextChunk == null’) // // There is only one new chunk (ref’d by new)
3: expected = chunk→new→nextChunk; // Memorize new last chunk’s next for the further

update
4: else expected = chunk→new→nextChunk→nextChunk; // There are two new chunks
5: if (FindChunk(key) != chunk) return; // Find the frozen chunk (and set next and prev).
6: // Mark the next pointer of the frozen chunk as swapped.
7: if (!CAS(&(chunk→nextChunk), next, markSwapped(next))) continue;
8: if (!HelpSwap(expected)) continue;
9: return;

10: } // end of while
}
Bool HelpSwap(chunk* expected) {
1: if (cur→new→nextChunk == null’) { // There is only one new chunk (ref’d by new)
2: addr = &(cur→new→nextChunk); // address to insert pointer to next.
3: } else { // There are two new chunks (last ref’d by nextChunk of new)
4: addr = &(cur→new→nextChunk→nextChunk);
5: }
6: if (!CAS(addr, expected, next)) return false;
7: if (cur→mergeBuddy == null) { // For copy and split, there is one old chunk
8: if (!CAS(prev, cur, cur→new)) return false; else RetireChunk(chunk);
9: } else { // For merge, there are two old chunks

10: if (!CAS(pre prev,cur→mergeBuddy,cur→new)) return false; else Re-
tireChunk(chunk);

11: } // end of if there is one old chunk
12: return true;
}

always succeeds since each chunk has a range of keys and one of these ranges contains the input key.
The FindChunk() method is presented later in this section (in Algorithm 20). This method also
sets the global variables pre prev, prev, cur and next to point at the previous to the previous
chunk (or null), previous chunk (or head), currently found chunk that is also returned; and the
next chunk (or null, if none exists) in the list. One important property of FindChunk() is that it
takes care of any encountered chunk that is marked ”swapped” by replacing it with the new chunks
that should replace it.

Next, we attempt to mark the frozen chunk as swapped, by setting the least-significant bit on
the nextChunk pointer. On failure, we start from scratch. After the nextChunk pointer is marked,
it can not be modified anymore. Now, we attempt to link the new chunks into the list instead
of the frozen chunk (and possibly a merge buddy in case of a merge). It is done in a supporting
HelpSwap() method, also presented at Algorithm 19. In HelpSwap() we start by making the new
chunk point to the next chunk in the chunk list. If a nextChunk field of new chunk is not null,
then we have two chunks to insert and we make its nextChunk pointer point to the next chunk.

26

Chunk A
H
E
A
D head 5 … …

nextChunk Chunk B (frozen)

head 50 … …

nextChunk

Chunk C

head 50 … …

nextChunk

(Initial)

new

(Mark&Copy)

(Swap)

new

new

Chunk A
H
E
A
D head 5 … …

nextChunk Chunk B (frozen)

head 50 … …

nextChunk

Chunk C

head 50 … …

nextChunk

new

new

new

Chunk A
H
E
A
D head 5 … …

nextChunk Chunk B (frozen)

head 50 … …

nextChunk

Chunk C

head 50 … …

nextChunk

new

new

new

Figure 4: The copy recovery in list of chunks.

Otherwise, we just have a single chunk to insert, which is pointed by new. In this case, we make its
nextChunk pointer point at the next chunk in the list. The expected value is the one read before
the FindChunk. If this setting of the nextChunk pointer fails, then we retry. Once the pointer
to the next chunk is properly installed in the new chunks, we continue into linking it (or them)
to the chunk list. In no merge is involved, we attempt to modify the previous chunk’s pointer to
point into the chunk referenced by new. If a merge is involved, then both the frozen chunk and
its merge buddy (which is the chunk preceding the frozen chunk) need to be replace by the new
chunks. HelpSwap() method make use of per thread global variables pre prev, prev, cur and
next and assumes the cur is marked as need to be swapped out.

We assume that the chunk list starts with a dummy record pointed by the global variable head,
and which also has a nextChunk field that can never be marked as swapped. We depict these steps
for the copy case of in Figure 4. The only difference for the split case is that we have two new
chunks to insert, instead of one. The merge case is depicted in Figure 5.

The FindChunk() method. We now proceed with describing the FindChunk() method, which
is similar to the Find() method. The code for this method is presented in Algorithm 20. We use four
global variables per thread. The cur variable points to the chunk that is currently being inspected.
The prev variable points to the chunk that precedes the one pointed by cur. (It may point to
head.) The pre prev variable points to the chunk that precedes the chunk pointed by prev, if
one exists. Finally, the next pointer points to the chunk that comes after the currently inspected
one. Another hazard pointers are also here to provide the correct reclamation of the chunks. We

27

Chunk A (slave, frozen)
H
E
A
D

new

head 5 … …

nextChunk

Chunk B (master, frozen)

head 50 … …

nextChunk

Chunk C

head 5 … …

nextChunk Chunk D

head 80 … …

nextChunk

Chunk E

head 99 … …

nextChunk

(Initial&Mark)

Chunk A (slave, frozen)
H
E
A
D head 5 … …

nextChunk

Chunk B (master, frozen)

head 50 … …

nextChunk

Chunk C

head 5 … …

nextChunk Chunk D

head 80 … …

nextChunk

Chunk E

head 99 … …

nextChunk

(Copy&Swap)

new new

new new

new new

new new

Figure 5: The merge recovery in list of chunks.

assume another array of hazard pointers separate from one used for entries reclamations. Chunk’s
hazard pointers are hp2, hp3, hp4, hp5 we need them to protect next, cur, prev, prev prev
respectively. After initiation of the global variables and some hazard pointers we continue going
over the list till the null pointer is encountered at the end of the list. For each inspected chunk
we check whether it is marked as swapped. If it is, we replace it with the new chunks, similarly
to the code of ListUpdate. If we help in merge that involves swapping out current chunk and the
previous chunk we restart from the beginning of the list. This is done for simplicity of the presented
code, since we can recover from the same place as well. We then check the next chunk and repeat
swapping until we reach an unmarked chunk. When we have a current chunk that is not marked
as swapped, we check whether we found the chunk holding a range of keys that contains the given
key. If we are at the last chunk of the list, then it is the right one, as it is associated with all
larger keys. Otherwise, we check the smallest key in the next chunk. If the input key is smaller,
then the current chunk is returned. Otherwise, we continue to check the next chunk. Implicitly,
this means that a chunk is associated with the range of keys that start in its smallest key (of its
first entry) and end in the smallest key of the following chunk. The last chunk in associated with
a range whose highest value is ∞.

One last method to be specified that handles the list of chunks is the listFindPrevious method,
predented at Algorithm 21 that finds the previous chunk to the input one, for use of the merge
procedure. If it doesn’t find its input chunk in the list, then this input chunk must have already
been frozen and disconnected from the list of chunks. In this case, a previous chunk is not well
defined, and this routine just returns the mergBuddy pointer of the input chunk.

28

Algorithm 20 Find the chunk whose associated range of keys contains the input key.
chunk* FindChunk (key) {
1: try again:
2: pre prev = null; prev = &(head→nextChunk); cur = *prev;
3: hp3* = cur; if (*prev != cur) goto try again;
4: while (clearSwapped(cur) != NULL) {
5: next = cur→nextChunk;
6: hp2* = next; if ((*prev != cur) || (*next != cur→nextChunk)) goto try again;
7: if (isSwapped(next)) { // Perform swap for a logically-marked swap.
8: if (!HelpSwap()) goto try again;
9: if (cur→mergeBuddy != null) goto try again; // prev & cur were swapped out

10: cur = cur→new;
11: hp3* = cur; if (*prev != cur) goto try again;
12: } else { // current chunk does not need to be swapped out
13: if (next == null) return cur;
14: nextKey = next→head→next→key;
15: if ((*prev != cur) || (*next != cur→nextChunk)) goto try again;
16: if (nextKey > key) return cur; // Next chunk’s key range is too high.
17: pre prev = prev; // Continue to next chunk
18: prev = &(cur→nextChunk);
19: tmp = hp5; hp5 = hp4; hp4 = hp3; hp3 = hp2; hp2=tmp; // promote hazard

pointers
20: cur = next;
21: }
22: } // end of while
}

D Supporting functionalities

Several trivial low-level methods were not specified. For completeness, we provide a short specifica-
tion for them in Figure 6. These functions are all local, and involve no concurrency (or contention)
issues.

E Linearization Points

When designing a concurrent data structure, it is important to spell out the linearization points
for the different operations. This is done in this section. In particular, we specify the linearization
points of the insertion, deletion and search operations.

The linearization point of insertion. We partition the insertion linearization point deter-
mination into two cases. If the insertion operation is successful, i.e., no other entries with same key
are found, then the linearization point is the successful execution of the CAS instruction at Line 11
of InsertEntry, where we actually modify the previous entry to point at the newly inserted entry.
This modification creates the linearization point, whether it is executed by the thread executing the
insert or by a different thread that is helping it (during a freeze). However, when this modification

29

Algorithm 21 Find previous chunk- High Level Method.
chunk* listFindPrevious (chunk* chunk) {
1: if (FindChunk(chunk→head→next→key) != chunk)
2: return chunk→mergeBuddy;
3: else return prev;
}

is executed on a new local chunk that a thread is preparing to replace a frozen chunk, then the
modification of the local chunk is not considered a linearization point. Instead, the linearization
point of the insert becomes the point in which the new chunk is inserted into the list of chunks.
For that this chunk need to be successfully linked to the the frozen chunk (successful Line 24 of
the FreezeRecovery() method) and then linked into list (Lines 8 or 10 of the HelpSwap() method).

If the insertion is not successful, i.e., an entry with the same key is found in the list, then
the linearization point is the linearization point of the successful Find that is invoked at Line 4 of
InsertEntry. The linearization point of the Find method is specified below. And again, a special
case is the one in which the freeze recovery is the one to find the key and decide on a failure. In
this case, the finding of the key happens on a new local chunk that is copy of the frozen chunk and
its linearization point is the point in which the new chunk is inserted into the list of chunks. The
lines are explained above.

The linearization point of deletion. Again, we start by considering the successful case, in
which the entry is found in the list, then the linearization point is the successful mark of the entry
with the deletion bit. This happens at the successful execution of the CAS instruction at Line 12
of DeleteInChunk. Note that sometimes we need to wait until a chunk is frozen and only then can
we attempt a deletion on a new chunk; however, the actual delete only happens when we manage
to set the delete bit on an unfrozen entry containing the key. When this modification of the delete
bit is executed on a new local chunk that a thread is preparing to replace a frozen chunk, then the
modification of the local chunk is not considered a linearization point. Instead, the linearization
point of the insert becomes the point in which the new chunk is inserted into the list of chunks.
For that this chunk need to be successfully linked to the the frozen chunk (successful Line 24 of
the FreezeRecovery() method) and then linked into list (Lines 8 or 10 of the HelpSwap() method).

When the deletion operation is not successful, i.e., an entry with the input key is not found,
then the linearization point is the linearization point of the unsuccessful Find that is called on Line
7 of DeleteInChunk. And again, a special case is the one in which the freeze recovery is the one to
not find the key and decide on a failure. In this case, the unsuccessful search of the key is executed
on a new local chunk and the linearization point is the point in which the new chunk is inserted
into the list of chunks. The lines are explained above.

The linearization point of search is the linearization point of the Find method invoked at
Line 1 of the SearchInChunk method.

The linearization point of the Find method is the a delicate one. The Find method may
traverse a chunk while it is being frozen. At the same time, the freeze may terminate concurrently,
and inserts and deletes may occur on a new chunk that is not accessed by the find. Therefore, the
find may fail to find a key that is inserted before it terminates. We, therefore, set the linearization
point of Find to be the minimum between its standard linearization point and the time in which
a frozen chunk is taken out of the list by insertion the new chunk, that is supposed to replace it.

30

Thus, the linearization point of a Find may happen earlier than the actual time when the find
locates (or fails to locate) the input key. The point at which the frozen chunk is replaced satisfies
that a new chunk can not modify keys before 1. This discussion is formalized below.

Consider a Find operation on a chunk C, we define the exchange point of the find operation
on C, denoted EP (C) to be ∞ if the freezeState of C is no freeze at the time that the Find
method returns. Otherwise, EP (C) is defined to be the time in which the first thread succeeds to
replace C with the new chunk pointed by C’s new pointer. Namely, among all threads executing
the HelpSwap() method on chunk C, EP (C) is determined to be the minimum time in which one
of them started executing Line Lines 8 or 10. Now that we have defined EP (C), we consider the
normal operation of Find, set linearization points to it, and then select the minimum between them
and EP (C).

Again, we separate for successful and unsuccessful cases. When the Find is successful, i.e., it
returns a non-NULL cur pointer, the linearization point of Find happens when the cur pointer
successful passes the validation check in Line 15 in the Find method. (Note that the validation is
successful when the condition in Line 15 is evaluated to false.) And as explained earlier, if EP (C)
happens earlier, then EP (C) is the linearization point.

The unsuccessful case is more involved. Consider an execution of Find with input key k. There
are two failure possibilities.

1. The first possibility is that an entry with k existed in the list but was marked as deleted.
In this case the execution of Find disconnects it and the linearization point is the successful
removal of the entry from the list, i.e., the successful CAS in Line 10 of Find.

2. The second possibility is that the entry with k did not exist in the list when Find searched for
it (even not with a deletion mark). In this case, we set the linearization point of the failing
Find to be when the pointer to the entry with the smallest key higher than k was loaded into
the local variable cur in Lines 2, 12 or 19 of the Find method.

Again, the above two linearization points are set only if they happen before EP (C). Otherwise,
EP (C) is the linearization point.

F Some words on design considerations and correctness

In this section we explain the main idea behind the algorithm, which form the intuition for a
correctness proof of this paper. Various parts of the algorithm are not new. The use of hazard
pointer is similar to previous work, and the synchronization operations are used in a standard
manner. The main deviation from previous work is the use of the freeze process to avoid many of
the concurrency problems that naturally arise without it. The main problem is that when many
concurrent operations are run on a chunk, it is not easy to determine how many entries reside on
it, and whether it requires a split or a merge or none. An attempt to decide on a split and then
reverse the decision may run into serious synchronization difficulties. We therefore choose the freeze
method to stabilize it and make all threads work in harmony on it afterwards.

When a thread fails to find space for allocation, or when the size of the the chunk appears
to be too low for a delete, a freeze is initiated. the freeze process is not atomic. While entries

1Except those inserted/deleted in the same point of time by freeze help. They are considered to be modified ε
after.

31

are marked as frozen, more inserts and deletes may happen and the need for a split or a merge
may change during the freeze process. However, the freeze process is irreversible. The thread that
started it will go on marking entries as frozen whenever it gains CPU access, and other threads
that fail to insert or delete will join and help freezing the chunk. When all entries in the chunk are
frozen, no more updates can occur on this chunk the continuation of the recovery for this chunk
is completely determined from that point on. Thus, even if many threads attempt to build new
chunks to replace the frozen one, they will all build exactly the same replacements and it does not
matter which thread will do the final action of swapping the old chunk out of the list replacing it
with the newly prepared chunks. It doesn’t even matter if some of the work is done by one thread
and some by others, they are all guaranteed to create the same structure. Only after finishing
with the replacement of the old chunk, will the threads re-attempt the operation that failed. The
only difference in the results of newly created chunks can be in result of promoting the insertion,
deletion or enslaving during the freeze recovery.

To summarize, there are two main strategies. The first says that once an entry is marked frozen
it will not be modified again. Furthermore, when all entries in a chunk are marked as frozen, all
entries in the chunk will not be modified anymore, making the chunk data stable. This ensure
that two threads cannot disagree on the ”death” state of an entry. When a thread sees the entry
marked as frozen, it knows that no other thread will see it not-frozen in the future of the execution.
The second strategy says that once a chunk is stable, any thread can decide on what needs to be
done with this chunk and any thread can actually do it. All threads must reach the same decisions
exactly and they must all attempt to put exactly the same values in exactly the same format of new
chunks. Therefore, it odes not matter which of these thread does what. The outcome is determined
when the chunk gets stable, and all races become benign.

From these two design points many of the invariants follow. For example, a thread can get
inactive for as long as it wishes. When it wakes up, the chunk it is accessing may be frozen, but
hazard pointers ensure that the chunk has not been reclaimed, and any attempt of this thread to
modify the chunk will reveal the fact that all entries are frozen. The thread will then try to take
part in the freeze process and will quickly discover the chunks that replaced the frozen one and
apply its modifications to them.

32

Function’s Signature Explanations
word combine (Xbits x, Y bits
y);

Concatenates two strings of bits into one machine word, when x comes
goes to the most-significant bits, and y to the least-significant bits.

bool isFrozen (entry* p); Checks if the frozen bit (second LSB) is set in a given pointer p and
returns true or false accordingly.

entry* markFrozen (entry* p); Returns the value of a pointer p with the frozen bit set to one; it doesn’t
matter if in initial p this bit was set or not.

entry* clearFrozen (entry* p); Returns the value of a pointer p with the frozen bit reset to zero; it
doesn’t matter if in initial p this bit was set or not.

bool isDeleted(entry* p); Checks if deleted bit (LSB) is set in given pointer p.
entry* markDeleted (entry*
p);

Returns the value of a pointer p with the deleted bit set to one; it doesn’t
matter if in initial p this bit was set or not.

entry* clearDeleted (entry*
p);

Returns the value of a pointer p with the deleted bit reset to zero; it
doesn’t matter if in initial p this bit was set or not.

bool isSwapped (chunk* c); Checks if swapped bit (LSB) is set in given pointer to a chunk c.
chunk* markSwapped
(chunk* c);

Returns the value of a pointer c with the swapped bit set to one; it
doesn’t matter if in initial c this bit was set or not.

chunk* clearSwapped (chunk*
c);

Returns the value of a pointer c with the swapped bit set to zero; it
doesn’t matter if in initial c this bit was set or not.

void copyToOneChunk
(chunk* old, chunk* new);

Goes over all reachable entries in the old chunk linked list and copies
them to the new chunk linked list. It is assumed no other thread is
modifying the new chunk, and that the old chunk is frozen, so it cannot
be modified as well.

key mergeToTwoChunks
(chunk* old1, chunk* old2,
chunk* new1, chunk* new2);

Goes over all reachable entries in the old1 and old2 chunks linked lists
(which are sequential), finds the median key (which is returned) and
copies the bellow-median-value keys to the new1 chunk linked list and
the above-median-value keys to the new2 chunk linked list. In addition
it sets the new1 chunk’s pointer nextChunk to point to the new2 chunk.
It is assumed that no other thread modifies the new1 and new2 chunks,
and that the old chunks are frozen and thus cannot be modified as well.

void mergeToOneChunk
(chunk* old1, chunk* old2,
chunk* new);

Goes over all reachable entries on the old1 and old2 chunks linked lists
(which are sequential and have enough entries to fill one chunk’s linked
list) and copies them to the new chunk linked list. It is assumed that no
other thread modifies the new chunk and that the old chunks are frozen
and thus don’t change.

key splitIntoTwoChunks
(chunk* old, chunk* new1,
chunk* new2);

Goes over all reachable entries on the old chunk linked list, finds the
median key (which is returned) and copies the bellow-median-value keys
to the new1 chunk and the above-median-value keys to the new2 chunk.
In addition it sets the new1 chunk’s pointer nextChunk to point at
the new2 chunk. It is assumed that no other thread is modifying the
new1 and new2 chunks, and that the old chunk is frozen and cannot be
modified.

int getEntrNum (chunk* c); Goes over all reachable entries in Chunk c, counts them, and returns the
number of entries. Chunk c is assumed to be frozen and thus cannot be
modified.

void Allocate(); Allocates a new chunk as a zeroed memory chunk. The freeze state is
set to no freeze.

Figure 6: The specification of (simple) supporting functions.

33

