Skip to main content

Fast Mean Shift Algorithm Based on Discretisation and Interpolation

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6474))

  • 1443 Accesses

Abstract

A fast mean shift algorithm for processing the image data is presented. Although it is based on the known basic principles of the original mean shift method, it improves the computational speed substantially. It is being assumed that the spatial image coordinates and range coordinates can be discretised by introducing a regular grid. Firstly, the algorithm precomputes the values of shifts at the grid points. The mean shift iterations are then carried out by making use of the grid values and trilinear interpolation. In the paper, it is shown that this can be done effectively. Measured by the order of complexity, the values at all grid points can be precomputed in the time that is equal to the time required, in the original method, for computing only one mean shift iteration for all image points. The interpolation step is computationally inexpensive. The experimental results confirming the theoretical expectations are presented. The use of the step kernel for computing the shifts (corresponding to the Epanechnikov kernel for estimating the densities), and the images with only a single value at each pixel are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barash, D., Comaniciu, D.: A Common Framework for Nonlinear Diffusion, Adaptive Smoothing, Bilateral Filtering and Mean Shift. Image and Vision Computing 22, 73–81 (2004)

    Article  Google Scholar 

  2. Carreira-Perpiñán, M.: Fast Nonparametric Clustering with Gaussian Blurring Mean-Shift. In: International Conference on Machine Learning, pp. 153–160 (2006)

    Google Scholar 

  3. Carreira-Perpiñán, M.: Acceleration Strategies for Gaussian Mean-Shift Image Segmentation. In: Conference on Computer Vision and Pattern Recognition, pp. 1160–1167 (2006)

    Google Scholar 

  4. Cheng, Y.: Mean Shift, Mode Seeking and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 790–799 (1995)

    Article  Google Scholar 

  5. Christoudias, C.M., Georgescu, B., Meer, P.: Synergism in Low Level Vision. In: International Conference on Pattern Recognition, pp. 150–155 (2002)

    Google Scholar 

  6. Comaniciu, D., Meer, P.: Mean Shift Analysis and Applications. In: International Conference on Computer Vision, pp. 1197–1203 (1999)

    Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 1–18 (2002)

    Article  Google Scholar 

  8. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 564–575 (2003)

    Article  Google Scholar 

  9. Fukunaga, K., Hostetler, L.D.: The Estimation of the Gradient of a Density Function, with Application in Pattern Recognition. IEEE Transactions on Information Theory 21, 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Georgescu, B., Shimshoni, I., Meer, P.: Mean Shift Based Clustering in High Dimensions: A Texture Classification Example. In: International Conference on Computer Vision, pp. 456–463 (2003)

    Google Scholar 

  11. Paris, S., Durand, F.: A Topological Approach to Hierarchical Segmentation Using Mean Shift. In: Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  12. Vedaldi, A., Soatto, S.: Quick Shift and Kernel Methods for Mode Seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Yang, C., Duraiswami, R., Gumerov, N., Davis, L.: Improved Fast Gauss Transform and Efficient Kernel Density Estimation. In: International Conference on Computer Vision, pp. 464–471 (2003)

    Google Scholar 

  14. Yang, C., Duraiswami, R., Dementhon, D., Davis, L.: Mean-Shift Analysis Using Quasi-Newton Methods. In: International Conference on Image Processing, pp. 447–450 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sojka, E., Gaura, J., Fabián, T., Krumnikl, M. (2010). Fast Mean Shift Algorithm Based on Discretisation and Interpolation. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol 6474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17688-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17688-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17687-6

  • Online ISBN: 978-3-642-17688-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics