
 
 

University of Birmingham

Self-adapting Applications Based on QA
Requirements in the Cloud Using Market-Based
Heuristics
Nallur, Vivek; Bahsoon, Rami

DOI:
10.1007/978-3-642-17694-4_5

Document Version
Peer reviewed version

Citation for published version (Harvard):
Nallur, V & Bahsoon, R 2010, Self-adapting Applications Based on QA Requirements in the Cloud Using Market-
Based Heuristics. in E Di Nitto & R Yahyapour (eds), Towards a service-based internet. Lecture Notes in
Computer Science, vol. 6481, Springer, Berlin, pp. 51-62, 3rd European Conference on a Service-Based
Internet, Dec 13-15, 2010. Ghent, Belgium, 1/01/10. https://doi.org/10.1007/978-3-642-17694-4_5

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. May. 2024

https://doi.org/10.1007/978-3-642-17694-4_5
https://doi.org/10.1007/978-3-642-17694-4_5
https://birmingham.elsevierpure.com/en/publications/d61133d3-2d9c-414e-9ee3-9a666c94fa95


 
 
 
 
 
Self-adapting Applications Based on QA Requirements in the Cloud Using Market-Based 
Heuristics 
 
Vivek Nallur and Rami Bahsoon 
 
Conference : ServiceWave 2010 
 
Lecture Notes in Computer Science, 2010, Volume 6481, Towards a Service-Based 
Internet, Pages 51-62 
 

 
This is the author’s post-print. The published version is available at 
http://www.springerlink.com/content/5q60u766538n7263/  
 
 
 

http://www.springerlink.com/content/5q60u766538n7263/


Self-Adapting Applications Based on QA
Requirements in the Cloud Using Market-Based

Heuristics

Vivek Nallur and Rami Bahsoon

University of Birmingham,
Birmingham, B15 2TT, United Kingdom
{v.nallur,r.bahsoon}@cs.bham.ac.uk

Abstract. There are several situations where applications in the cloud
need to self-manage their quality attributes (QA). We posit that self-
adaptation can be achieved through a market-based approach and de-
scribe a marketplace for web-services. We simulate agents trading web-
services on behalf of self-managing applications and demonstrate that
such a mechanism leads to a good allocation of web-services to appli-
cations, even when applications dynamically change their QA require-
ments. We conclude with a discussion on evaluating this mechanism of
self-adaptation, with regards to scalability in the cloud.

Keywords: self-adaptation, web-services, quality attributes, cloud

1 Introduction

Many users experience a need to change the quality attributes(QA) exhibited
by their application. By QA, we mean non-functional aspects of an application
like performance, security etc. The need for change can occur due to dynamic
changes in the users’ requirements and the environment in which the system op-
erates. An unexpected time constraint, for instance, can require an organization
to increase the performance of its service provision. Governmental regulation can
require an organization to want to increase the audit trail or the security level,
whilst not changing the functionality of its application. Spikes and troughs in
business demand can spur a change in storage and performance requirements.
These examples (and requirements) are fairly commonplace, and yet mechanisms
to achieve them are not very clear. It seems obvious (and desirable) that appli-
cations should adapt themselves to these changing requirements, specially QA
requirements. Users find it difficult to understand, why a change that does not
affect the functionality of an application, but merely its security requirements is
difficult to achieve. However, in an arbitrary case, making an application adapt
is a difficult process. It has to be architected in such a manner that adaptation
is possible. This means that it should be able to:

1. Dynamically identify changed requirements, which will necessitate runtime
adaptation;



2. Initiate the search for new services, which better address the changed re-
quirements

3. Substitute old web-services for new web-services

In this paper, we look at the second of those three steps. Web-Service compo-
sition allows an application to switch one web-service for another, at runtime.
However, searching for new services, even ones that are functionally the same but
exhibit different QA levels, is a difficult process. This is exacerbated when the ap-
plication is resident on a cloud and has a plethora of web-services to choose from.
Applications can typically find web-services, based on their functionality, using
WSDL and UDDI registries. However, the number of available web-services to
chose from, is typically large, and the number of parameters on which to match,
adds to the complexity of choosing. Most of the current research on dynamic
web-service composition focuses on ascertaining the best match between the QA
demanded by the application and the QA advertised by the services. The best
match, however, is difficult if not impossible to find in a reasonable time, given
the dynamic nature and scalability of the cloud. Given time constraints, our ap-
proach advocates getting a good match, as fast as possible. A good match is one
where the chosen service meets the application’s minimum QA requirements,
but is not necessarily the best possible choice.
The problem can be illustrated in more detail by an example from the domain of
rendering 3D graphics(section 3). In [9], we proposed using a self-adapting mech-
anism, viz Market-Based Control for finding a fast, valid solution. We propose
that principles and tools of economics be used as a heuristic to explore the search
space. This paper is structured as follows: we first review other approaches in
self-adaptation (section 2), present a motivating example for our approach (sec-
tion 3), propose the design of a market (section 4), and report on the scalability
of the approach. We conclude by highlighting the strengths and weaknesses of
our approach (section 5) and discuss mechanisms that could improve it further.

2 Related Work

There have been a plethora of attempts at creating self-managing architectures.
These attempts can be classified as approaching the problem from the following
perspectives:

– Map system to ADL, dynamically change ADL, check for constraints, trans-
form ADL to executable code [6].

– Create a framework for specifying types of adaptation possible using con-
straints and tactics thus ensuring ‘good adaptation’ [4].

– Using formalized methods like SAM [12], middleware optimizations [11] and
control theory [8]

However, all of these approaches envision a closed-loop system. That is, all of
them assume that

1. The entire state of the application and the resources available for adaptation
are known/visible to the management component.



2. The adaptation ordered by the management component is carried out in full,
never pre-empted or disobeyed.

3. The management component gets full feedback on the entire system.

However, in the context of the cloud, with applications being composed of ser-
vices resident on several (possibly different) clouds, the assumptions above do
not hold true. It is unreasonable to expect that third-party services would obey
adaption commands, given by an application’s self-management component.
Therefore, instead of making third-party services adapt, self-adaptive applica-
tions simply choose services, that meet their changed requirements. That is, they
substitute old services providing a given QA, with new ones providing better-
matched QA. Zeng et al. [14] were amongst the first to look at non-functional
attributes while composing web-services. They proposed a middleware-based ap-
proach where candidate execution plans of a service-based application are eval-
uated and the optimal one is chosen. The number of execution plans increase
exponentially with the number of candidate services and linear programming
is used to select an optimal plan. Anselmi et al. [1] use a mixed integer pro-
gramming approach to look at varying QA profiles and long-lived processes.
Increasing the number of candidate services however means an exponential in-
crease in search time, due to the inherent nature of linear programming. Canfora
et al. [3] have used genetic algorithms to replan composite services dynamically
and also introduce the idea of a separate triggering algorithm to detect the need
for re-planning. While much better than the time taken for an exact solution,
GAs are still not scalable enough to deal with hundreds or thousands of services
in real-time. Yu et al. [13] propose heuristics to come up with inexact, yet good,
solutions. They propose two approaches to service composition, a combinatorial
model and a graph model. The heuristic for the graph model (MSCP-K) is expo-
nential in its complexity, while the one for the combinatorial model (WS HEU)
is polynomial.
The main difference between our approach and these algorithms, lies in the con-
text of the problem that is being solved. We are looking at the simultaneous
adaptation of hundreds of applications in the cloud, whereas the research above
looks at optimal selection of web-services for a single application. The cloud, by
definition, offers elasticity of resources and immense scale. Any solution for the
cloud therefore, needs to dynamic and fast, and not necessarily optimal. Adap-
tation also emphasizes timeliness and constraint satisfaction, which is easier to
achieve using decentralized approaches. Most middleware type approaches (as
outlined above) are centralized in nature. A marketplace, on the other hand, is a
decentralized solution, which adapts quickly to changes in conditions. A double
auction is known to be highly allocation-efficent [7], thus meeting the criteria
of timeliness and goodness of adaptation within constraints. Also, the market-
based approach is resilient to failures of individual traders or even marketplaces.
In the event of one marketplace failing, the buyers and sellers simply move to
another market.



3 Rendering 3D graphics

Consider a company that specializes in providing 3D rendering services. To save
on capital expenditure, it creates an application that lives on the cloud and uses
web-services to do the actual computation. This allows it to scale up and scale
down the number of computational nodes, depending on the size of the job. How-
ever as business improves, the company implements a mechanism for automated
submission of jobs, with differentiated rates for jobs with different priorities,
requirements and even algorithms. For instance, a particular job may require
texture and fluid modelling with a deadline of 30 hours, while another might
require hair modelling with a tighter deadline of 6 hours. Yet another job might
require ray-tracing with a deadline of 20 hours. Also, any of these jobs might
have dynamically changing deadlines. This means that the application would
need to change its performance QA dynamically. Depending on the kind of data
and algorithm being used, the application’s storage requirements would change
as well. For certain tasks, the application might require large amounts of slow
but reliable storage, while others might require smaller amounts of higher-speed
storage. This company would like to create an application, that self-managed
its QA, depending on the business input that was provided, on a per-task basis.
Each of these self-management decisions are constrained by the cost of change.
Now consider a multiplicity of such companies, each with several such applica-
tions, present on a cloud that provides web-services for computation, storage
as well as implementations of sophisticated graphics algorithms. Each of the
providing web-services have differing levels of QA as well as differing prices.
Matching a dynamically changing list of buyers and sellers, each with their own
QA levels and prices, is an important and difficult task for a cloud provider. It
is important because, if a large number of buyers do not get the QA levels they
desire, within their budget, they will leave for other clouds that do provide a
better matching mechanism. It is also difficult because the optimal assignment
at one time instance could be different from the optimal assignment at the next
time instance. Aradgna et al. have shown in [2] that assignment of web-services
when QA levels are static is equivalent to a Multiple-Choice Multi-Dimensional
Knapsack Problem, which is NP-hard. Thus, the problem of assignment, when
QA levels change dynamically, is also NP-hard. We contend therefore, that cloud
implementations should provide a mechanism that solves this problem. Ideally
it should be a self-managing approach that accounts for changes in operating
environment and user preferences.

4 Description of Market

We describe a marketplace where multiple applications try to self-manage, in
order to dynamically achieve their targetted QA. Each application has a pri-
vate utility function with regard to certain fixed QAs. From utility theory, we
use a von Neumann-Morgenstern utility function [10], that maps a QA(ω) to a
real number, uω : Xω −→ R, which is normalized to[0, 1]. Each application is



composed of several services that contribute to the QA of the application. In
the marketplace, each of these services is bought and sold by a trading agent.
The agents trading on behalf of the application (the buyers) do not know the
application’s private utility function and attempt to approximate it. The only
information that flows from the application to the agents, upon the completion
of a trade, is a penalty or a reward. This enables the agent to work out two pieces
of information: the direction it should go and the magnitude of that change. Al-
though this meagre information flow makes the task of approximation harder,
we think that it is more realistic since application architects would concentrate
on creating the right composition of web-service functionality while third-party
trading agents would concentrate on buying in the marketplace. There is no
overriding need for trust amongst these two entities. In the motivating exam-
ple above, the application for rendering graphics would be buying services that
provide CPU, storage and algorithmic functionality. Each of these three services
would be managed by a buying agent, that monitors the required QA, assesses
the available resources and trades in the market. Enterprises that sell CPU time,
storage space and implementations of graphics algorithms would be the selling
agents in their respective markets. The market is a virtual auction house, created
in a cloud, to whom the buyers and sellers would submit their trading requests.

We populate several markets with buying agents and selling agents. Each market
describes a certain service class (sx). A service class (sx) contains services that
are fundamentally identical in terms of functionality. The only differentiating
factor, amongst the various services in a class, are the QA that each one exhibits.
Thus, storage services belong to one service class, while services offering CPU
time would belong to another service class, and so on. All the buying and selling
agents in this market, trade services that deliver sx, where sx ∈ Sx. The number
of markets is at least equal to | S |, with each market selling a distinct sx. In
other words, we assume that there exists a market for every sx, that is needed
by an application.

Buyer: The Buyer is a trading agent that buys a service for an Application, i.e.,
it trades in a market for a specific service class sx. Each service, available in sx,
exhibits the same QAs (ω ∈ QA). Hence, if an application has K QAs that it is
concerned about, then the QAs that it gets for each of the Sx that it buys is:

ΩSx = 〈ωsx
1 , ωsx

2 , ωsx
3 , . . . , ωsx

K 〉 (1)

The amount that the buyer is prepared to pay is called the bid price and this is
necessarily less than or equal to the Bsx , where Bsx is the budget available with
the buyer. The combination of Ω demanded and the bid price is called a Bid.

In its attempt to reach the Application’s QA requirement, the Buyer uses a
combination of explore and exploit strategies. When trading begins, the Buyer
randomly chooses an Ω (explore) and bid price. Based on whether it trades
successfully and how close its guess was to the private QA, the Application
provides with feedback in the form of how close the buyer is, to the private QA.



Based on this feedback, the Buyer either continues with the previously used
strategy (exploit) with slight changes in price or changes strategies (explore).
The trading strategy is essentially a combination of reinforcement learning and
ZIP [5]. We expect the simultaneous use of this, by large number of traders, to
result in an efficient search for a good assignment.

Fig. 1. Decentralized MAPE Loop; each service, in the application, self-adapts

Seller: Each seller is a trading agent, selling a web-service that exhibits the QA
required in (1). The degree to which each QA(ω) is exhibited in each sx being
sold, is dependent on the technological and economic cost of providing it. Hence,
if the cost of providing sx with Ω = 〈0.5, 0.6〉 is low, then there will be many
sellers providing sx with a low ask price. Conversely, if the cost of providing sx

with Ω = 〈0.8, 0.9〉 is high, then the ask price will be high. An individual seller’s
ask price can be higher or lower based on other factors like number of sellers in
the market, the selling strategy etc., but we mandate that the ask price is always
greater than or equal to the cost. The combination of Ω and ask price is called
the Ask. The obvious question that arises, is that of truth-telling by Seller. That
is, how does the buyer know that the Seller is not mis-representing the Ω of her
web-service? We currently assume that a Seller does tell the truth about Ω of
her web-service and that a Market has mechanisms to penalize Sellers that do
not.



Market: A market is a set of buyers and sellers, all interested in the same service
class sx. The factor differentiating the traders are:

– Ω: The combination of 〈ω1, ω2, . . . ωk〉
– Price: Refers to the bid price and ask price. The buyers will not pay more

than their respective bid price and the sellers will not accept a transaction
lower than their respective ask price.

The mechanism of finding a matching buyer-and-seller is the continuous dou-
ble auction(CDA). A CDA works by accepting offers from both buyers and sell-
ers. It maintains an orderbook containing both, the bids from the buyers and
the asks from the sellers. The bids are held in descending order of price, while
the asks are held in ascending order, i.e., buyers willing to pay a high price and
sellers willing to accept a lower price are more likely to trade. When a new bid
comes in, the offer is evaluated against all the existing asks in the book and
a transaction is conducted when the price demanded by the ask is lower than
the price the bid is willing to pay and all the QA attributes in Ω of the ask
are greater than or equal to all the QA attributes in the Ω of the bid. Thus, a
transaction always meets a buyer’s minimum QA constraints. Each transaction
generates a corresponding Service Level Agreement(SLA), which sets out the
QA levels that will be available for x invocations of a particular web-service.
After a transaction, the corresponding bid and ask are cleared from the order-
book. Since this procedure is carried out for every offer (bid/ask) that enters
the market, the only bids and asks that remain on the orderbook are those that
haven’t been matched. It has been shown that even when buyers and sellers have
Zero-Intelligence, the structure of the market allows for a high degree of alloca-
tive efficiency [7]. A market is said to be allocatively efficient, if it produces an
optimal allocation of resources. That is, in our case, the optimum assignment
of sellers to buyers, based on multiple criteria of QA and price. Obviously, the
market is not guaranteed to produce a completely efficient allocation, but even
a high degree of efficiency is acceptable to us.

Applications: The Application is a composition of buyers from different markets.
In our example, it would be the agent performing the orchestration of the CPU
service, the storage service and the graphics service. An application is composed
of at most | (Sx) | buyers with a privately known Ωsx for each buyer. The buyer
gets a certain budget (Bsx) from the Application for each round of trading.
The total amount of budget B represents the application’s global constraint on
resources available for adaptation. After each round of trading, depending on
the Ω obtained by the buyer, the Application has procured a total QA that is
given by:

∀sx ∈ Sx,
∑

Ωsx (2)

Buying and using a web-service involves many costs, and these must be com-
pared against the projected utility gain to decide whether it is worthwhile to
switch. These may be enumerated as:



– Buying Cost: The price of purchasing the web-service for n calls (psx)
– Transaction Cost: The amount to be paid to the market, for making the

transaction (tsx)
– Switching Cost: The amount of penalty to be paid, for breaking the contract

with the current web-service (swsx)

Thus, the total cost that the application must consider is:

TCsx = psx + tsx + ssx (3)

We assume that, for every application there exists a function that maps TCsx

to an equivalent Ωsx . The application could easily buy the best possible web-
service(s) available, if it was prepared to spend an infinite amount of money.
However, in reality, every application is constrained by a budget(B) that it is
willing to spend. Allocating M amongst the functionalities that it is buying
(sx ∈ Fx) is a matter of strategy and/or the relative importance of each sx.

∀sx ∈ Sx,
∑

Bsx = M (4)

After every round, the application compares the privately known Ωsx with
the Ωb

sx
and determines whether to punish/reward the buyer. From this piece of

information, the buyer can only guess whether it needs to improve the Ωb
sx

that
it obtained or the price that it paid. Once the Ωb

sx
is close enough to the private

Ωsx , then the application refrains from trading any further, until it changes the
privately known Ωsx

. Changing of the private Ωsx
simulates the change in the

environment, which has prompted adaptation by the application. The buyers
have to now re-approximate the private Ωsx .

Trigger for Adaptation: There are two possible scenarios for adaptation, contin-
uous and criteria-based. In continuous adaptation, the application never really
leaves the market, even after the Buyer agents have successfully fulfilled its QA
requirement. It continues to employ Buyer agents in the hope that the buyer
agent might procure a web-service with comparable QA, but at a lower cost. In
criteria-based adaptation, a separate monitoring agent watches the Application’s
utility function as well as its budget. Any change in these, beyond a threshold,
would trigger the monitoring agent to re-employ Buyer agents. This scenario also
allows a human to enter the adaptation loop, by manually triggering the Buyer
agents. We opted to simulate the continuous adaptation scenario, since we’re in-
terested in observing a long-lived, large system where human intervention might
not be possible.

5 Evaluation

We intend to find out whether an application, following rules outlined above,
could achieve the overall QA that it expects from its constituent web-services,
keeping in mind the fact that the buying agents responsible for the individual



services, are not aware of the QA levels expected by the application. They merely
attempt to approximate it, based on the feedback given by the application. The
evaluation of the market-based approach is particularly hard, since it is a proba-
bilistic approach. After every trading round, the bid price and ask price of every
buyer and seller changes. This changes the optimal assignment, for every trading
round. Hence, we do not consider whether the mechanism achieves optimal as-
signment, rather only whether it results in achievement of the Application’s QA
levels. In our simulation, each application composes 5 web-services to function.
For each of these web-services, it has a private, different QA expectation. At the
end of each trading round, the application examines the QA achieved by each
buying agent. For each agent, it compares the private QA level with the achieved
QA level, using a cosine similarity function. The cosine similarity compares two
vectors for similarity and returns a result between 0 and 1(1 denoting an exact
match). The combined similarity score is reflective of the degree to which the
application’s QA needs were satisfied. The theoretical maximum score, it could
ever achieve with 5 web-services, is therefore 5.0.

5.1 Adaptation Level

The following graphs show simulations under three different market conditions.
All values are the mean value of 30 simulations, each simulation consisting of
300 rounds of trading. The band (shaded area) around the line are the standard
deviations. The line marked as ‘ideal score’represents the theoretical maximum
level of QA that the Application privately wants to have. The QA values for
various services in the market were generated from a gaussian distribution. All
simulations were done a dual-core P4 class machine with 2GB of RAM.

Fig. 2. Self-adaptation in the presence of equal demand and supply



The figure above shows markets with excess supply (left) and excess demand
(right). Notice that in the figure with extra demand (right), the line showing the
self-adaptation squiggles around for slightly longer than the other two figures
(left and above). But, this is in line with intuition, where, the application finds
it more difficult to get the QA that it demands, since there are a lot of buyers
in the market demanding the same QA. It is interesting to note that even with
simple agents, the application, as a whole, is able to reach very close to its ideal
level of QA.

5.2 Scaling

One of the central themes of this paper has been scaling to the level of the
cloud, which might contain hundreds or even thousands of services. We ran our
simulations with increasing number of service candidates (in each market), and
we found that the auction mechanism scales gracefully(Fig.3 ). As the number
of service candidates (the number of buyers and sellers) increases from 100 to
1600, the time taken to reach an assignment rises in a near-linear fashion.

5.3 Strengths

We see in all cases, that the mechanism allows an application to reach very
close to its desired level of QA. The nature of the mechanism is that it is highly
distributed and asynchronous. This allows for a highly parallelizable implemen-
tation, and hence is very scalable. The buying agents, that trade on behalf of the
application, are very simple agents with a minimal learning mechanism. Also, the
concept of an auction is very simple to understand and implement. All the en-
tities in the mechanism are simple and it is their interaction that makes it richer.

5.4 Limitation

Our implementation currently does not allow for more than one global constraint.
By global constraint, we mean QA levels or other dimensions that the application
has to meet, as a whole. Since, each market addresses one service class only, the



Fig. 3. Time taken by auction mechanism to perform matching

QA constraints for each individual service are met. However, the collective QA
generated by the composition of services is not subjected to any constraint, other
than price. This, however, is a limitation of our current implementation, and not
of the approach. It is easy to envision a more complex Application entity that
tests web-services, for their contribution to the total utility, before accepting it
for a longer term contract.

The market-based approach does not currently reason about the time taken
for adaptation. In cases where the timeliness of adaptation is more important
than the optimality of adaptation, this could be an issue.

6 Conclusion and Future Work

We consider that the Market-based approach to self-adaptation is a promising
one. Since the entities in the market are inherently distributed and asynchronous,
the market-based approach lends itself to highly parallelizable implementations.
However more formal work needs to be done to prove its scalability. There is
little literature on assessing the quality of a self-managing architecture. As future
work, we will be looking at measures to assess the quality of the solution found by
the Market-based approach as compared to other search based approaches. We
aim to complement our approach with sensitivity analysis, where we analyze the
impact of changing individual QA of a given service, on the entire application’s
utility.



References

1. Anselmi, J., Ardagna, D., Cremonesi, P.: A qos-based selection approach of au-
tonomic grid services. In: Proceedings of the 2007 workshop on Service-oriented
computing performance: aspects, issues, and approaches. pp. 1–8. SOCP ’07, ACM,
New York, NY, USA (2007), http://doi.acm.org/10.1145/1272457.1272458

2. Ardagna, D., Pernici, B.: Global and local qos constraints guarantee in web service
selection. In: ICWS ’05: Proceedings of the IEEE International Conference on Web
Services. pp. 805–806. IEEE Computer Society, Washington, DC, USA (2005)

3. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: Qos-aware replanning of
composite web services. In: ICWS ’05: Proceedings of the IEEE International Con-
ference on Web Services. pp. 121–129. IEEE Computer Society, Washington, DC,
USA (2005)

4. Cheng, S., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the pres-
ence of multiple objectives. In: Proceedings of the 2006 international workshop
on Self-adaptation and self-managing systems. ACM, Shanghai, China (2006),
http://dx.doi.org/10.1145/1137677.1137679

5. Cliff, D., Bruten, J.: Less than human: Simple adaptive trading agents for cda
markets. Tech. rep., Hewlett-Packard (1997), http://www.hpl.hp.com/agents/

papers/less than human.pdf

6. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-
healing systems. In: WOSS ’02: Proceedings of the first workshop on Self-healing
systems. pp. 21–26. ACM Press, New York, NY, USA (2002), http://dx.doi.org/
10.1145/582128.582133

7. Gode, D.K., Sunder, S.: Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality. The Journal of Po-
litical Economy 101(1), 119–137 (1993), http://www.jstor.org/stable/2138676

8. Hellerstein, J.: Engineering Self-Organizing Systems, p. 1 (2007), http://dx.doi.
org/10.1007/978-3-540-74917-2 1

9. Nallur, V., Bahsoon, R., Yao, X.: Self-optimizing architecture for ensuring quality
attributes in the cloud. In: Proceedings of the 7th Working IEEE/IFIP Conference
on Software Architecture (WICSA 2009), Cambridge, UK, September 14-17 (2009)

10. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.
Princeton University Press, 3rd edn. (January 1953)

11. Trofin, M., Murphy, J.: A Self-Optimizing container design for enterprise java beans
applications. In: In Proceedings of the Second International Workshop on Dy-
namic Analysis (WODA 2004 (2003), http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.59.2979

12. Wang, J., Guo, C., Liu, F.: Self-healing based software architecture modeling and
analysis through a case study. In: Networking, Sensing and Control, 2005. Proceed-
ings. 2005 IEEE. pp. 873–877 (2005), http://dx.doi.org/10.1109/ICNSC.2005.
1461307

13. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1), 6 (2007)

14. Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng.
30(5), 311–327 (2004)

http://doi.acm.org/10.1145/1272457.1272458
http://dx.doi.org/10.1145/1137677.1137679
http://www.hpl.hp.com/agents/papers/less_than_human.pdf
http://www.hpl.hp.com/agents/papers/less_than_human.pdf
http://dx.doi.org/10.1145/582128.582133
http://dx.doi.org/10.1145/582128.582133
http://www.jstor.org/stable/2138676
http://dx.doi.org/10.1007/978-3-540-74917-2_1
http://dx.doi.org/10.1007/978-3-540-74917-2_1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2979
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2979
http://dx.doi.org/10.1109/ICNSC.2005.1461307
http://dx.doi.org/10.1109/ICNSC.2005.1461307

	Self-Adapting Applications Based on QA Requirements in the Cloud Using Market-Based Heuristics
	Introduction
	Related Work
	Rendering 3D graphics
	Description of Market
	Evaluation
	Adaptation Level
	Scaling
	Strengths
	Limitation

	Conclusion and Future Work


