Skip to main content

Physical Design Aware Comparison of Flip-Flops for High-Speed Energy-Efficient VLSI Circuits

  • Conference paper
Integrated Circuit and System Design. Power and Timing Modeling, Optimization, and Simulation (PATMOS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6448))

  • 1327 Accesses

Abstract

In this paper, an extensive comparison of flip-flop (FF) topologies for high-speed applications is carried out in a 65-nm CMOS technology. This work goes beyond previous analyses in that traditional rankings do not include layout parasitics, which strongly affect both speed and energy and lead to drastic changes in the optimum transistor sizing. For this reason, in this work layout parasitics are included in the circuit design loop by adopting a novel strategy. The obtained results show that the energy efficiency and the performance of FFs is mainly determined by the regularity of their topology and layout. Finally, the area-delay tradeoff is also analyzed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kurd, N., et al.: A Family of 32nm IA Processors. In: 2010 IEEE ISSCC (2010)

    Google Scholar 

  2. Oklobdzija, V., et al.: Digital System Clocking: High-Performance and Low Power Aspects. Wiley-IEEE Press (2003)

    Google Scholar 

  3. Alioto, M., et al.: Flip-Flop Energy/Performance versus Clock Slope and Impact on the Clock Network Design. In: Print on IEEE TCAS-I

    Google Scholar 

  4. Nedovic, N., et al.: Dual-Edge Triggered Storage Elements and Clocking Strategy for Low-Power Systems. IEEE TVLSI 13(5), 577–590 (2005)

    Google Scholar 

  5. Stojanovic, V., et al.: Comparative Analysis of Master-Slave Latches and Flip-Flops for High-Performance and Low-Power Systems. IEEE JSSC 34(4), 536–548 (1999)

    Google Scholar 

  6. Giacomotto, C., et al.: The Effect of the System Specification on the Optimal Selection of Clocked Storage Elements. IEEE JSSC 42(6), 1392–1404 (2007)

    Google Scholar 

  7. Markovic, D., et al.: Analysis and design of Low-Energy Flip-Flops. In: 2001 ISLPED, pp. 52–55 (2001)

    Google Scholar 

  8. Tschanz, J., et al.: Comparative Delay and Energy of Single Edge-Triggered and Dual Edge-Triggered Pulsed Flip-Flops for High-Performance Microprocessors. In: 2001 ISLPED, pp. 147–152 (2001)

    Google Scholar 

  9. Heo, S., et al.: Load-Sensitive Flip-Flop Characterization. In: 2001 IEEE CSW-VLSI, pp. 87–92 (2001)

    Google Scholar 

  10. Heo, S., et al.: Activity-Sensitive Flip-Flop and Latch Selection for Reduced Energy. IEEE TVLSI 15(9), 1060–1064 (2007)

    Google Scholar 

  11. Alioto, M., et al.: General Strategies to Design Nanometer Flip-Flops in the Energy-Delay Space. In: Print on IEEE TCAS-I

    Google Scholar 

  12. Partovi, H., et al.: Flow-Through Latch and Edge-Triggered Flip-Flop Hybrid Elements. In: 1996 IEEE ISSCC, pp. 138–139 (1996)

    Google Scholar 

  13. Klass, F., et al.: A New Family of Semidynamic and Dynamic Flip-Flops with Embedded Logic for High-Performance Processors. IEEE JSSC 34(5), 712–716 (1999)

    Google Scholar 

  14. Heald, R., et al.: A Third Generation SPARC V9 64-b Microprocessor. IEEE JSSC 35(11), 1526–1538 (2000)

    Google Scholar 

  15. Nedovic, N., et al.: Conditional Techniques for Low Power Consumption Flip-Flops. In: 2001 IEEE ICECS, vol. 2, pp. 803–806 (2001)

    Google Scholar 

  16. Zhao, P., et al.: Low Power and High Speed Explicit-Pulsed Flip-Flops. In: 2002 IEEE MSCS, pp. 477–480 (2002)

    Google Scholar 

  17. Naffziger, S., et al.: The Implementation of the Itanium 2 Microprocessor. IEEE JSSC 37(11), 1448–1460 (2002)

    Google Scholar 

  18. Nikolic, B., et al.: Improved Sense-Amplifier-Based Flip-Flop: Design and Measurements. IEEE JSSC 35(6), 876–884 (2000)

    MathSciNet  Google Scholar 

  19. Nedovic, N., et al.: A Clock Skew Absorbing Flip-Flop. In: 2003 IEEE ISSCC, pp. 342–344 (2003)

    Google Scholar 

  20. Kong, B., et al.: Conditional-Capture Flip-Flop for Statistical Power Reduction. IEEE JSSC 36(8), 1263–1271 (2001)

    Google Scholar 

  21. Shin, S., et al.: Variable Sampling Window Flip-Flops for Low-Power High-Speed VLSI. In: 2005 IEE CDS, vol. 152(3), pp. 266–271 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alioto, M., Consoli, E., Palumbo, G. (2011). Physical Design Aware Comparison of Flip-Flops for High-Speed Energy-Efficient VLSI Circuits. In: van Leuken, R., Sicard, G. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization, and Simulation. PATMOS 2010. Lecture Notes in Computer Science, vol 6448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17752-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17752-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17751-4

  • Online ISBN: 978-3-642-17752-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics