Skip to main content

Efficient Large-Scale Image Data Set Exploration: Visual Concept Network and Image Summarization

  • Conference paper
Advances in Multimedia Modeling (MMM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6524))

Included in the following conference series:

  • 1937 Accesses

Abstract

When large-scale online images come into view, it is very important to construct a framework for efficient data exploration. In this paper, we build exploration models based on two considerations: inter-concept visual correlation and intra-concept image summarization. For inter-concept visual correlation, we have developed an automatic algorithm to generate visual concept network which is characterized by the visual correlation between image concept pairs. To incorporate reliable inter-concept correlation contexts, multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. For intra-concept image summarization, we propose a greedy algorithm to sequentially pick the best representation of the image concept set. The quality score for each candidate summary is computed based on the clustering result, which considers the relevancy, orthogonality and uniformity terms at the same time. Visualization techniques are developed to assist user on assessing the coherence between concept-pairs and investigating the visual properties within the concept. We have conducted experiments and user studies to evaluate both algorithms. We observed very good results and received positive feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. PAMI 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  2. Hauptmann, A., Yan, R., Lin, W.-H., Christel, M., Wactlar, H.: Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news. IEEE Trans. on Multimedia 9(5), 958–966 (2007)

    Article  Google Scholar 

  3. Benitez, A.B., Smith, J.R., Chang, S.-F.: MediaNet: A multimedia information network for knowledge representation. In: Proc. SPIE, vol. 4210 (2000)

    Google Scholar 

  4. Naphade, M., Smith, J.R., Tesic, J., Chang, S.-F., Hsu, W., Kennedy, L., Hauptmann, A., Curtis, J.: Large-scale concept ontology for multimedia. IEEE Multimedia (2006)

    Google Scholar 

  5. Cilibrasi, R., Vitanyi, P.: The Google similarity distance. IEEE Trans. Knowledge and Data Engineering 19 (2007)

    Google Scholar 

  6. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Boston (1998)

    MATH  Google Scholar 

  7. Wu, L., Hua, X.-S., Yu, N., Ma, W.-Y., Li, S.: Flickr distance. In: ACM Multimedia (2008)

    Google Scholar 

  8. Jing, Y., Baluja, S., Rowley, H.: Canonical image selection from the web. In: Proceedings of the 6th ACM International CIVR, Amsterdam, The Netherlands, pp. 280–287 (2007)

    Google Scholar 

  9. Simon, I., Snavely, N., Seitz, S.M.: Scene Summarization for online Image Collections. In: ICCV 2007 (2007)

    Google Scholar 

  10. Fan, J., Gao, Y., Luo, H.: Hierarchical classification for automatic image annotation. In: ACM SIGIR, Amsterdam, pp. 11–118 (2007)

    Google Scholar 

  11. Gao, Y., Peng, J., Luo, H., Keim, D., Fan, J.: An Interactive Approach for Filtering out Junk Images from Keyword-Based Google Search Results. IEEE Trans on Circuits and Systems for Video Technology 19(10) (2009)

    Google Scholar 

  12. Lowe, D.: Distinctive image features from scale invariant keypoints. Intl Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  13. Grin, G., Holub, A., Perona, P.: Caltech-256 object category dataset, Technical Report 7694, California Institute of Technology (2007)

    Google Scholar 

  14. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  15. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. Intl Journal of Computer Vision 73(2), 213–238 (2007)

    Article  Google Scholar 

  17. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing features: efficient boosting procedures for multiclass object detection. In: IEEE CVPR (2004)

    Google Scholar 

  18. Huang, J., Kumar, S.R., Zabih, R.: An automatic hierarchical image classification scheme. In: ACM Multimedia, Bristol, UK (1998)

    Google Scholar 

  19. Vasconcelos, N.: “Image indexing with mixture hierarchies. In: IEEE CVPR (2001)

    Google Scholar 

  20. Barnard, K., Forsyth, D.: Learning the semantics of words and pictures. In: IEEE ICCV, pp. 408–415 (2001)

    Google Scholar 

  21. Naphade, M., Huang, T.S.: A probabilistic framework for semantic video indexing, filterig and retrieval. IEEE Trans. on Multimedia 3(1), 141–151 (2001)

    Article  Google Scholar 

  22. Yang, C., Luo, H., Fan, J.: Generating visual concept network from large-scale weakly-tagged images. In: Advance in Multimedia Modeling (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, C., Feng, X., Peng, J., Fan, J. (2011). Efficient Large-Scale Image Data Set Exploration: Visual Concept Network and Image Summarization. In: Lee, KT., Tsai, WH., Liao, HY.M., Chen, T., Hsieh, JW., Tseng, CC. (eds) Advances in Multimedia Modeling. MMM 2011. Lecture Notes in Computer Science, vol 6524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17829-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17829-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17828-3

  • Online ISBN: 978-3-642-17829-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics