Abstract
When large-scale online images come into view, it is very important to construct a framework for efficient data exploration. In this paper, we build exploration models based on two considerations: inter-concept visual correlation and intra-concept image summarization. For inter-concept visual correlation, we have developed an automatic algorithm to generate visual concept network which is characterized by the visual correlation between image concept pairs. To incorporate reliable inter-concept correlation contexts, multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. For intra-concept image summarization, we propose a greedy algorithm to sequentially pick the best representation of the image concept set. The quality score for each candidate summary is computed based on the clustering result, which considers the relevancy, orthogonality and uniformity terms at the same time. Visualization techniques are developed to assist user on assessing the coherence between concept-pairs and investigating the visual properties within the concept. We have conducted experiments and user studies to evaluate both algorithms. We observed very good results and received positive feedback.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. PAMI 22(12), 1349–1380 (2000)
Hauptmann, A., Yan, R., Lin, W.-H., Christel, M., Wactlar, H.: Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news. IEEE Trans. on Multimedia 9(5), 958–966 (2007)
Benitez, A.B., Smith, J.R., Chang, S.-F.: MediaNet: A multimedia information network for knowledge representation. In: Proc. SPIE, vol. 4210 (2000)
Naphade, M., Smith, J.R., Tesic, J., Chang, S.-F., Hsu, W., Kennedy, L., Hauptmann, A., Curtis, J.: Large-scale concept ontology for multimedia. IEEE Multimedia (2006)
Cilibrasi, R., Vitanyi, P.: The Google similarity distance. IEEE Trans. Knowledge and Data Engineering 19 (2007)
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Boston (1998)
Wu, L., Hua, X.-S., Yu, N., Ma, W.-Y., Li, S.: Flickr distance. In: ACM Multimedia (2008)
Jing, Y., Baluja, S., Rowley, H.: Canonical image selection from the web. In: Proceedings of the 6th ACM International CIVR, Amsterdam, The Netherlands, pp. 280–287 (2007)
Simon, I., Snavely, N., Seitz, S.M.: Scene Summarization for online Image Collections. In: ICCV 2007 (2007)
Fan, J., Gao, Y., Luo, H.: Hierarchical classification for automatic image annotation. In: ACM SIGIR, Amsterdam, pp. 11–118 (2007)
Gao, Y., Peng, J., Luo, H., Keim, D., Fan, J.: An Interactive Approach for Filtering out Junk Images from Keyword-Based Google Search Results. IEEE Trans on Circuits and Systems for Video Technology 19(10) (2009)
Lowe, D.: Distinctive image features from scale invariant keypoints. Intl Journal of Computer Vision 60, 91–110 (2004)
Grin, G., Holub, A., Perona, P.: Caltech-256 object category dataset, Technical Report 7694, California Institute of Technology (2007)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)
Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. Intl Journal of Computer Vision 73(2), 213–238 (2007)
Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing features: efficient boosting procedures for multiclass object detection. In: IEEE CVPR (2004)
Huang, J., Kumar, S.R., Zabih, R.: An automatic hierarchical image classification scheme. In: ACM Multimedia, Bristol, UK (1998)
Vasconcelos, N.: “Image indexing with mixture hierarchies. In: IEEE CVPR (2001)
Barnard, K., Forsyth, D.: Learning the semantics of words and pictures. In: IEEE ICCV, pp. 408–415 (2001)
Naphade, M., Huang, T.S.: A probabilistic framework for semantic video indexing, filterig and retrieval. IEEE Trans. on Multimedia 3(1), 141–151 (2001)
Yang, C., Luo, H., Fan, J.: Generating visual concept network from large-scale weakly-tagged images. In: Advance in Multimedia Modeling (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, C., Feng, X., Peng, J., Fan, J. (2011). Efficient Large-Scale Image Data Set Exploration: Visual Concept Network and Image Summarization. In: Lee, KT., Tsai, WH., Liao, HY.M., Chen, T., Hsieh, JW., Tseng, CC. (eds) Advances in Multimedia Modeling. MMM 2011. Lecture Notes in Computer Science, vol 6524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17829-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-17829-0_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17828-3
Online ISBN: 978-3-642-17829-0
eBook Packages: Computer ScienceComputer Science (R0)