Abstract
Large-scale user contributed images with tags are increasingly available on the Internet. However, the uncertainty of the relatedness between the images and the tags prohibit them from being precisely accessible to the public and being leveraged for computer vision tasks. In this paper, a novel algorithm is proposed to better align the images with the social tags. First, image clustering is performed to group the images into a set of image clusters based on their visual similarity contexts. By clustering images into different groups, the uncertainty of the relatedness between images and tags can be significantly reduced. Second, random walk is adopted to re-rank the tags based on a cross-modal tag correlation network which harnesses both image visual similarity contexts and tag co-occurrences. We have evaluated the proposed algorithm on a large-scale Flickr data set and achieved very positive results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: CHI, pp. 971–980 (2007)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2) (2008)
Fan, J., Gao, Y., Luo, H.: Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation. IEEE Transactions on Image Processing 17(3), 407–426 (2008)
Fan, J., Luo, H., Shen, Y., Yang, C.: Integrating visual and semantic contexts for topic network generation and word sense disambiguation. In: CIVR (2009)
Fan, J., Shen, Y., Zhou, N., Gao, Y.: Harvesting large-scaleweakly-tagged image databases from the web. In: Proc. of CVPR 2010 (2010)
Fan, J., Yang, C., Shen, Y., Babaguchi, N., Luo, H.: Leveraging large-scale weakly-tagged images to train inter-related classifiers for multi-label annotation. In: Proceedings of the First ACM Workshop on Large-scale Multimedia Retrieval and Mining, LS-MMRM 2009, pp. 27–34. ACM, New York (2009)
Flickr. Yahoo! (2005), http://www.flickr.com
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)
Halaschek-Wiener, C., Golbeck, J., Schain, A., Grove, M., Parsia, B., Hendler, J.: Photostuff-an image annotation tool for the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729. Springer, Heidelberg (2005)
Hsu, W.H., Kennedy, L.S., Chang, S.-F.: Video search reranking through random walk over document-level context graph. In: ACM Multimedia, pp. 971–980 (2007)
Kennedy, L.S., Chang, S.-F., Kozintsev, I.: To search or to label?: predicting the performance of search-based automatic image classifiers. In: Multimedia Information Retrieval, pp. 249–258 (2006)
Liu, D., Hua, X.-S., Wang, M., Zhang, H.-J.: Retagging social images based on visual and semantic consistency. In: WWW, pp. 1149–1150 (2010)
Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: WWW, pp. 351–360 (2009)
Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th International Conference on World Wide Web (WWW 2008), Beijing, China, April 21-25, pp. 327–336 (2008)
Stark, M.M., Riesenfeld, R.F.: Wordnet: An electronic lexical database. In: Proceedings of 11th Eurographics Workshop on Rendering. MIT Press, Cambridge (1998)
Tan, H.-K., Ngo, C.-W., Wu, X.: Modeling video hyperlinks with hypergraph for web video reranking. In: Proceeding of the 16th ACM International Conference on Multimedia, MM 2008, pp. 659–662. ACM, New York (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhou, N., Peng, J., Feng, X., Fan, J. (2011). Towards More Precise Social Image-Tag Alignment. In: Lee, KT., Tsai, WH., Liao, HY.M., Chen, T., Hsieh, JW., Tseng, CC. (eds) Advances in Multimedia Modeling. MMM 2011. Lecture Notes in Computer Science, vol 6524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17829-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-17829-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17828-3
Online ISBN: 978-3-642-17829-0
eBook Packages: Computer ScienceComputer Science (R0)