Skip to main content

Towards More Precise Social Image-Tag Alignment

  • Conference paper
Advances in Multimedia Modeling (MMM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6524))

Included in the following conference series:

  • 1907 Accesses

Abstract

Large-scale user contributed images with tags are increasingly available on the Internet. However, the uncertainty of the relatedness between the images and the tags prohibit them from being precisely accessible to the public and being leveraged for computer vision tasks. In this paper, a novel algorithm is proposed to better align the images with the social tags. First, image clustering is performed to group the images into a set of image clusters based on their visual similarity contexts. By clustering images into different groups, the uncertainty of the relatedness between images and tags can be significantly reduced. Second, random walk is adopted to re-rank the tags based on a cross-modal tag correlation network which harnesses both image visual similarity contexts and tag co-occurrences. We have evaluated the proposed algorithm on a large-scale Flickr data set and achieved very positive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: CHI, pp. 971–980 (2007)

    Google Scholar 

  2. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2) (2008)

    Google Scholar 

  3. Fan, J., Gao, Y., Luo, H.: Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation. IEEE Transactions on Image Processing 17(3), 407–426 (2008)

    Article  MathSciNet  Google Scholar 

  4. Fan, J., Luo, H., Shen, Y., Yang, C.: Integrating visual and semantic contexts for topic network generation and word sense disambiguation. In: CIVR (2009)

    Google Scholar 

  5. Fan, J., Shen, Y., Zhou, N., Gao, Y.: Harvesting large-scaleweakly-tagged image databases from the web. In: Proc. of CVPR 2010 (2010)

    Google Scholar 

  6. Fan, J., Yang, C., Shen, Y., Babaguchi, N., Luo, H.: Leveraging large-scale weakly-tagged images to train inter-related classifiers for multi-label annotation. In: Proceedings of the First ACM Workshop on Large-scale Multimedia Retrieval and Mining, LS-MMRM 2009, pp. 27–34. ACM, New York (2009)

    Google Scholar 

  7. Flickr. Yahoo! (2005), http://www.flickr.com

  8. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Halaschek-Wiener, C., Golbeck, J., Schain, A., Grove, M., Parsia, B., Hendler, J.: Photostuff-an image annotation tool for the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729. Springer, Heidelberg (2005)

    Google Scholar 

  10. Hsu, W.H., Kennedy, L.S., Chang, S.-F.: Video search reranking through random walk over document-level context graph. In: ACM Multimedia, pp. 971–980 (2007)

    Google Scholar 

  11. Kennedy, L.S., Chang, S.-F., Kozintsev, I.: To search or to label?: predicting the performance of search-based automatic image classifiers. In: Multimedia Information Retrieval, pp. 249–258 (2006)

    Google Scholar 

  12. Liu, D., Hua, X.-S., Wang, M., Zhang, H.-J.: Retagging social images based on visual and semantic consistency. In: WWW, pp. 1149–1150 (2010)

    Google Scholar 

  13. Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: WWW, pp. 351–360 (2009)

    Google Scholar 

  14. Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th International Conference on World Wide Web (WWW 2008), Beijing, China, April 21-25, pp. 327–336 (2008)

    Google Scholar 

  15. Stark, M.M., Riesenfeld, R.F.: Wordnet: An electronic lexical database. In: Proceedings of 11th Eurographics Workshop on Rendering. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Tan, H.-K., Ngo, C.-W., Wu, X.: Modeling video hyperlinks with hypergraph for web video reranking. In: Proceeding of the 16th ACM International Conference on Multimedia, MM 2008, pp. 659–662. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, N., Peng, J., Feng, X., Fan, J. (2011). Towards More Precise Social Image-Tag Alignment. In: Lee, KT., Tsai, WH., Liao, HY.M., Chen, T., Hsieh, JW., Tseng, CC. (eds) Advances in Multimedia Modeling. MMM 2011. Lecture Notes in Computer Science, vol 6524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17829-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17829-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17828-3

  • Online ISBN: 978-3-642-17829-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics