Abstract
Bag-of-visual words (BOVW) is a local feature based framework for content-based image and video retrieval. Its performance relies on the discriminative power of visual vocabulary, i.e. the cluster set on local features. However, the optimisation of visual vocabulary is of a high complexity in a large collection. This paper aims to relax such a dependence by adapting the query generative model to BOVW based retrieval. Local features are directly projected onto latent content topics to create effective visual queries; visual word distributions are learnt around local features to estimate the contribution of a visual word to a query topic; the relevance is justified by considering concept distributions on visual words as well as on local features. Massive experiments are carried out the TRECVid 2009 collection. The notable improvement on retrieval performance shows that this probabilistic framework alleviates the problem of visual ambiguity and is able to afford visual vocabulary with relatively low discriminative power.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, A., Triggs, B.: Multilevel image coding with hyperfeatures. International Journal of Computer Vision 78(1), 15–27 (2008)
Battiato, S., Farinella, G.M., Gallo, G., Ravì, D.: Spatial hierarchy of textons distributions for scene classification. In: Huet, B., Smeaton, A., Mayer-Patel, K., Avrithis, Y. (eds.) MMM 2009. LNCS, vol. 5371, pp. 333–343. Springer, Heidelberg (2009)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR 2009 (2009)
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007)
Jiang, Y.-G., Ngo, C.-W.: Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval. Computer Vision and Image Understanding 113(3), 405–414 (2009)
Li, L.-J., Socher, R., Fei-Fei, L.: Towards total scene understanding:classification, annotation and segmentation in an automatic framework. In: Proc. IEEE Computer Vision and Pattern Recognition, CVPR (2009)
Liu, D., Hua, G., Viola, P., Chen, T.: Integrated feature selection and higher order spatial feature extraction for object categorisation. In: CVPR 2008, pp. 1–8 (2008)
Lowe, D.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (September 1999)
Marszalek, M., Schmid, C., Harzallah, H., van de Weijer, J.: Learning representations for visual object class recognition. In: ICCV (2007)
Punitha, P., Misra, H., Ren, R., Hannah, D., Goyal, A., Villa, R., Jose, J.M.: Glasgow university at trecvid 2009. In: TRECVID (2009)
Savarese, S., Winn, J., Criminisi, A.: Discriminative object class models of appearance and shape by correlatons. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, Washington, DC, USA, pp. 2033–2040. IEEE Computer Society Press, Los Alamitos (2006)
Snoek, C.G.M., van de Sande, K.E.A., de Rooij, O., Huurnink, B., van Gemert, J., Uijlings, J.R.R., He, J., Li, X., Everts, I., Nedovic, V., van Liempt, M., van Balen, R., de Rijke, M., Geusebroek, J.-M., Gevers, T., Worring, M., Smeulders, A.W.M., Koelma, D., Yan, F., Tahir, M.A., Mikolajczyk, K., Kittler, J.: The mediamill TRECVID 2009 semantic video search engine. In: TRECVID (2009)
Uijlings, J.R.R., Smeulders, A.W.M., Scha, R.J.H.: Real-time bag of words, approximately. In: CIVR 2009, Santorini, Fira, Greece, pp. 1–8. ACM, New York (2009)
van Gemert, J.C., Veenman, C.J., Smeulders, A.W., Geusebroek, J.-M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1271–1283 (2010)
Zhai, C., Lafferty, J.: A risk minimization framework for information retrieval. Inf. Process. Manage 42(1), 31–55 (2006)
Zhang, S., Tan, Q., Hua, G., Huang, Q., Li, S.: Descriptive visual words and visual phrases for image applications. In: ACM Multimedia 2009 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ren, R., Collomosse, J., Jose, J. (2011). A BOVW Based Query Generative Model. In: Lee, KT., Tsai, WH., Liao, HY.M., Chen, T., Hsieh, JW., Tseng, CC. (eds) Advances in Multimedia Modeling. MMM 2011. Lecture Notes in Computer Science, vol 6523. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17832-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-17832-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17831-3
Online ISBN: 978-3-642-17832-0
eBook Packages: Computer ScienceComputer Science (R0)