Skip to main content

L2-Signature Quadratic Form Distance for Efficient Query Processing in Very Large Multimedia Databases

  • Conference paper
Advances in Multimedia Modeling (MMM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6523))

Included in the following conference series:

  • 1424 Accesses

Abstract

The highly increasing amount of multimedia data leads to extremely growing databases which support users in searching and exploring the database contents. Content-based searching for similar objects inside such vivid and voluminous multimedia databases is typically accompanied by an immense amount of costly similarity computations among the stored data objects. In order to process similarity computations arising in content-based similarity queries efficiently, we present the L 2-Signature Quadratic Form Distance which maintains high retrieval quality and improves the computation time of the Signature Quadratic Form Distance by more than one order of magnitude. As a result, we process millions of similarity computations in less than a few seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beecks, C., Uysal, M.S., Seidl, T.: Signature Quadratic Form Distances for Content-Based Similarity. In: Proc. of ACM Int. Conf. on Multimedia, pp. 697–700 (2009)

    Google Scholar 

  2. Beecks, C., Uysal, M.S., Seidl, T.: A comparative study of similarity measures for content-based multimedia retrieval. In: Proc. of IEEE Int. Conf. on Multimedia and Expo., pp. 1552–1557 (2010)

    Google Scholar 

  3. Beecks, C., Uysal, M.S., Seidl, T.: Signature Quadratic Form Distance. In: Proc. of ACM Int. Conf. on Image and Video Retrieval, pp. 438–445 (2010)

    Google Scholar 

  4. Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval: An Experimental Comparison. Information Retrieval 11(2), 77–107 (2008)

    Article  Google Scholar 

  5. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and Effective Querying by Image Content. Journal of Intelligent Information Systems 3(3/4), 231–262 (1994)

    Article  Google Scholar 

  6. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples an incremental bayesian approach tested on 101 object categories. In: Proc. of the Workshop on Generative-Model Based Vision (2004)

    Google Scholar 

  7. Hu, R., Rüger, S.M., Song, D., Liu, H., Huang, Z.: Dissimilarity measures for content-based image retrieval. In: Proc. of IEEE Int. Conf. on Multimedia and Expo., pp. 1365–1368 (2008)

    Google Scholar 

  8. Huiskes, M.J., Lew, M.S.: The MIR Flickr Retrieval Evaluation. In: Proc. of ACM Int. Conf. on Multimedia information retrieval, pp. 39–43 (2008)

    Google Scholar 

  9. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff Distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  10. Leow, W.K., Li, R.: The analysis and applications of adaptive-binning color histograms. Computer Vision and Image Understanding 94(1-3), 67–91 (2004)

    Article  Google Scholar 

  11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  12. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  13. Nene, S., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100). Tech. rep., Department of Computer Science, Columbia University (1996)

    Google Scholar 

  14. Park, B.G., Lee, K.M., Lee, S.U.: Color-based image retrieval using perceptually modified Hausdorff distance. Journal on Image and Video Processing, 1–10 (2008)

    Google Scholar 

  15. Rubner, Y.: Perceptual metrics for image database navigation. Ph.D. thesis (1999)

    Google Scholar 

  16. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. Int. Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  17. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9) (2010)

    Google Scholar 

  18. Seidl, T., Kriegel, H.-P.: Efficient User-Adaptable Similarity Search in Large Multimedia Databases. In: Proc. of Int. Conf. on Very Large Data Bases, pp. 506–515 (1997)

    Google Scholar 

  19. Veltkamp, R., Tanase, M., Sent, D.: Features in content-based image retrieval systems: A survey. State-of-the-art in content-based image and video retrieval, 97–124 (2001)

    Google Scholar 

  20. Wang, J.Z., Jia, L., Wiederhold, G.: SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beecks, C., Uysal, M.S., Seidl, T. (2011). L2-Signature Quadratic Form Distance for Efficient Query Processing in Very Large Multimedia Databases. In: Lee, KT., Tsai, WH., Liao, HY.M., Chen, T., Hsieh, JW., Tseng, CC. (eds) Advances in Multimedia Modeling. MMM 2011. Lecture Notes in Computer Science, vol 6523. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17832-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17832-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17831-3

  • Online ISBN: 978-3-642-17832-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics