
Combination of Similarity Measures in Ontology Matching
using the OWA Operator

Qiu Ji, Peter Haase, Guilin Qi
Institute AIFB

University of Karlsruhe
D-76128 Karlsruhe, Germany

{qiji,pha,gqi}@aifb.uni-karlsruhe.de

Abstract

In this paper, we provide a novel
solution for ontology matching by
using the ordered weighted average
(OWA) operator to aggregate mul-
tiple values obtained from different
similarity measures. We have imple-
mented the solution in the ontology
matching system FOAM. Using the
base matchers in FOAM, we analyze
the way to choose different OWA
operators and compare our system
with others.

1 Introduction

Ontology matching aims at identifying corre-
spondences between elements in multiple on-
tologies. Ontology matching has many appli-
cation areas, such as data integration, data
merging, and semantic search across hetero-
geneous data sources. So far, quite a number
of ontology matching systems have been pro-
posed. Good surveys of different approaches
to the matching problem are provided in
[6, 7]. Most approaches rely on similarity-
based techniques that try to find correspon-
dences based on various similarity measures,
each computed by individual base matchers.

It has been accepted that combining the re-
sults of multiple base matchers is a promis-
ing technique to obtain more accurate match-
ing results than just using one matcher at a
time. Usually, a simple weighted average is
used as the aggregation function where the

weights can be obtained manually or by ma-
chine learning techniques. Obviously, it is
difficult for a person to manually assign the
weights by experience. Conversely, for meth-
ods based on machine learning method, rich
data sets are needed to train the algorithms
to obtain useful weights.

To alleviate this problem, we investigate the
use of the Ordered Weighted Average (OWA)
for the aggregation of similarity values ob-
tained by individual similarity measures. A
weight used by the OWA operator is associ-
ated not with a specific similarity measure,
but instead with a specific ordered position.
We have implemented our solution in the on-
tology matching system FOAM1. There are
two main reasons for integrating the OWA op-
erator into FOAM:

1. FOAM provides many base matchers ac-
cording to various features of OWL on-
tologies such as super-concepts and sub-
concepts.

2. The OWA operator is a powerful oper-
ator to aggregate multiple values, and
there are many kinds of approaches to
obtain OWA weights. Particularly, the
linguistic OWA operator provides seman-
tic explanations which can be understood
by users easily.

This paper is organized as follows: In Sec-
tion 2, we discuss related work on aggregation
of similarity measures in ontology matching.
In Section 3 we describe the background of

1http://ontoware.org/projects/map

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 243–250

Torremolinos (Málaga), June 22–27, 2008

the FOAM system and the OWA operator and
then discuss the integration of OWA operator
into FOAM and the resulting problems. We
evaluate the OWA combination method based
on FOAM in Section 4. In Section 5 we con-
clude and give an outlook to future work.

2 Related Work

Ontology matching systems have been devel-
oped by many researchers [6, 7]. They con-
sider various kinds of information provided
in ontologies. To aggregate results of mul-
tiple base matchers, many combination meth-
ods have been proposed. In the following we
discuss the ones are most related to our work.

COMA [1] exploits Max, Min, Average and
Weighted strategies for combination. The
Weighted strategy needs a relative weight for
each matcher to show its relative importance.
The study in paper [3] uses linear (weighted)
combination to aggregate the similarities ob-
tained by all the features that make the defi-
nition of an entity in an OWL-Lite ontology.

CMC [10] combines multiple schema match-
ing strategies based on credibility prediction.
It needs to predict the accuracy of each
matcher on the current matching task first by
a manual rule or a machine learning method.
Accordingly, different credit for the matcher
is assigned. From each base matcher, two ma-
trices including the similarity matrix and the
credibility matrix are provided. The credibil-
ities are used as weights to aggregate multiple
similarity values obtained by the base match-
ers into a single one.

In the original version of FOAM, which imple-
ments the algorithms described in [2], both
manual and automatic approaches to learn
how to combine the similarity values are pro-
vided.

To sum up, the weighted average is the most
popular aggregation operator to combine mul-
tiple values. The weight here is assigned to
different base matchers and can be obtained
manually or by machine learning techniques.
When it is not necessary or difficult to get
weights for base matchers, only Max, Min and

Average can be used. However, since each
base matcher performs differently under dif-
ferent conditions, these operators may be not
enough to show various performance for com-
plex situations.

In our previous work [4], linguistic OWA op-
erators are introduced to aggregate multiple
values for ontology matching. But there is no
details about

1. How the performance of OWA operator
behaves with more base matchers and
complex ontologies.

2. How to choose different combination op-
erators for different purposes.

3. How the performance of the system com-
pares with other ontology matching sys-
tems.

In this paper, we provide a new solution for
ontology matching by integrating OWA op-
erator into the FOAM system. Based on this
solution, the questions above can be answered
accordingly.

3 The OWA Operator for
Ontology Matching

3.1 Ontology Matching in FOAM

Search
Step

Selection

Similarity

Assessment

Similarity

Aggregation

Iteration

2
 3
 4

6

Feature

Engineering

Inter
-

pretation

1
 5
Input
 Output

Search
Step

Selection

Similarity

Assessment

Similarity

Aggregation

Iteration

2
 3
 4

6

Feature

Engineering

Inter
-

pretation

1
 5
Input
Input
 Output
Output

Figure 1: Ontology matching process in
FOAM

The FOAM system is based on a generic pro-
cess for ontology matching, as described in
[2]. Other ontology matching approaches can
be described in terms of this process as well.
Here, we only describe briefly the process to
the extent that is necessary to understand
how the role of similarity aggregation works
within this process. Figure 1 illustrates the
six main steps of the generic process.

Input: Input for the process are two or
more ontologies, which need to be matched

244 Proceedings of IPMU’08

with one another. Additionally, it is of-
ten possible to enter pre-known (manual)
matches. They can help to improve the search
for matches.

1. Feature engineering: The role of fea-
ture engineering is to select relevant features
of the ontology to describe a specific ontol-
ogy entity, based on which the similarity with
other entities will later be assessed. For in-
stance, the matching process may only rely
on a subset of OWL primitives. For each fea-
ture, a specific matcher based on a similarity
measure will be assigned.

2. Search Step Selection: The derivation
of ontology matches takes place in a search
space of candidate matches. This step may
choose to compute the similarity of certain
candidate element pairs and to ignore others
in order to prune the search space [2].

3. Similarity Computation: For a given
description of two entities from the candidate
matches this step computes the similarity of
the entities using the selected features and
corresponding similarity measures.

4. Similarity Aggregation: In general,
there may be several similarity values for a
candidate pair of entities, e.g., one for the
similarity of their labels and one for the sim-
ilarity of their relationship to other entities.
These different similarity values for one can-
didate pair have to be aggregated into a single
aggregated similarity value. Often – as in the
original FOAM system – a weighted average is
used for the aggregation of similarity values.

5. Interpretation: The interpretation fi-
nally uses individual or aggregated similar-
ity values to derive matches between entities.
A common approach is to use thresholds [1]:
If the similarity of two elements exceeds the
threshold, the elements are considered as a
match.

6. Iteration: The similarity of one entity
pair influences the similarity of neighboring
entity pairs, for example, if the instances are

equal this affects the similarity of the con-
cepts and vice versa. Therefore, the matching
process is repeated until no new alignments
are proposed or a fixed number (for our test,
the maximal iteration is set 3) of iteration is
reached.

Output: The output is a representation of
matches and possibly with additional confi-
dence values based on the similarity of the
entities.

3.2 The Ordered Weighted Average
Operator

The ordered weighted averaging (OWA) op-
erator is introduced in [11] to aggregate in-
formation. It has been used in a wide range
of application areas, such as neural networks
and fuzzy logic controllers.

Assume we are given a set of arguments V1

= (a1, a2, ..., an), ai ∈ [0, 1], 1 ≤ i ≤ n,
and the weights for OWA operator W =
(w1, ..., wn). After reordering the elements in
V1 in descending order, we mark it as V2 =
(b1, b2, ..., bn), where bj is the jth highest value
in V1. An OWA operator is a mapping func-
tion F from In to I, I = [0, 1]:

F (a1, a2, ..., an) =
∑n

i=1 wibi

= w1b1 + w2b2 + ... + wnbn,
where wi ∈ [0, 1] and

∑n
i=1 wi = 1.

Note that a weight wi is not associated with a
particular argument ai, but with a particular
ordered position i of the arguments. That is
wi is the weight associated with the ith largest
argument whichever component it is [11].

Obviously, determining the OWA weights wi,
1 ≤ i ≤ n is a critical task. So far, quite
a few approaches have been proposed. We
adopt the linguistic quantifiers developed by
Yager [11], since these quantifiers have seman-
tics which can be accepted easily for users.
They are defined as:

wi = Q(i/n)−Q((i− 1)/n), i = 1, 2, ..., n (1)

where Q is a nondecreasing proportional fuzzy
linguistic quantifier and is defined as the fol-

Proceedings of IPMU’08 245

lowing:

Q(r) =


0, if r < a;
(r − a)/(b− a), if a ≤ r ≤ b;
1, if r > b,

(2)

where 0 ≤ a, b, r ≤ 1, a and b are the pre-
defined thresholds. Obviously, the operators
such as Maximal, Minimal and Average are
three special cases of OWA operator.

For some special linguistic operators like at
least half which are used in the paper, we in-
troduce their semantic interpretations within
the application area of ontology matching to
facilitate users to choose different operators
for different tasks or purposes.

Assume there are n base matchers m1, m2,
..., mn. Each base matcher can be regarded
as a criteria, so the aggregation process is to
form an overall decision by considering mul-
tiple criteria. For an entity pair (x, y), where
x belongs to source ontology and y belongs to
target ontology, mi(x, y) indicates the degree
to which the entity pair (x, y) satisfies the cri-
teria or base matcher mi. Actually, mi(x, y) is
the similarity value between x and y obtained
by base matcher mi, where i= 1, 2, ..., n.

1. Maximal: Max(x, y) = Max{m1(x, y),
m2(x, y),...,mn(x, y)}, where Max means
that (x, y) satisfies at least one of the
matchers, i.e., satisfies m1 or ... or mn.

2. Minimal: Min(x, y) = Min{m1(x, y),
m2(x, y), ..., mn(x, y)}. Min means that
(x, y) satisfies all the matchers, that is to
say, we are essentially requiring to satisfy
m1 and ... and mn.

3. Average: Average means identity, which
regards all similarity values equally.

4. At least half: This operator satisfies at
least half matchers. Actually, it only con-
siders the first half of similarity values af-
ter re-ordering them in descending order.

5. Most: Most means most of the matchers
is satisfied. Usually, this operator ignores
some higher and lower similarity values,
that is to give small weights on them,

while paying more attention to the val-
ues in the middle of the input arguments
after re-ordering.

6. As many as possible: It satisfies as many
as possible matchers and is opposite to at
least half. The second half of values after
reordering is considered. So after an ag-
gregation operation, the result obtained
by at least half is always higher than that
by as many as possible.

3.3 Integration of OWA into FOAM

In FOAM, originally a weighted average is
used for the similarity aggregation step, which
gives more importance to the labels of the en-
tities to be compared. If there is no label
available, the performance will become worse.

In our work, we use the OWA operator to
combine similarity values obtained from mul-
tiple similarity methods. Obviously, the main
advantage is that no weights are fixed to these
similarity methods, but to the positions of
these similarity values in a descending or-
der. In this way, each base matcher is treated
equally. The second advantage is that, al-
though the OWA weights can be obtained
manually or by machine learning techniques,
there are quite a few straightforward methods
without data sets for training and too much
preliminary knowledge. What the users need
to do is to take several ontology pairs to be
compared as samples and observe the results
obtained by the base matchers for each en-
tity pair, or they can simply choose different
linguistic OWA operators by their semantic
interpretations.

To choose OWA operators by observation, we
assume there are n single base matchers for a
category, which can be concept category, data
property category, object property category
or instance category. If most single matchers
could return m (0 ≤ m ≤ n) similarity val-
ues simi above zero, where 0 ≤ i ≤ m, and
0 < simi ≤ 1, then it is better to choose an
OWA operator which can give some impor-
tance to most of the m highest values or all of
them, while assigning lower or zero to other
n − m values. Basing on the base matchers

246 Proceedings of IPMU’08

we use in this paper, no more than half of the
base matchers return some similarity values
above zero in most cases. Based on our ex-
perience, higher values are more reliable, but
one should not rely on just one highest value.
So it would be better to use at least half which
only considers the half higher values, but not
to use maximal considering one extreme value
for each aggregation.

4 Evaluation and Discussion

4.1 Data Sets

We use the benchmarks which are provided
by the OAEI campaign in 20062. The bench-
marks test case includes 51 ontologies in
OWL. Ontology 101 is regarded as the ref-
erence ontology, i.e., each ontology in the
benchmarks, including ontology 101, will be
matched against it. The benchmarks are di-
vided into three groups marked as 1xx (on-
tology 101-104), 2xx (ontology 201-266) and
3xx (ontology 301-304). More details can be
found on the website of OAEI 2006.

The goal of this benchmark series is to identify
the areas in which each matching algorithm is
strong and weak. For testing, the results are
computed automatically without the partici-
pation of users. We also obey the rule to ob-
tain mappings to compare with other systems
in OAEI 2006.

4.2 Evaluation Criteria

In order to compare the performance of differ-
ent matching algorithms, several evaluation
criteria are used to give different views of the
results. Except the standard measures such as
precision, recall and f-measure, the harmonic
mean measure is also used to compare our re-
sults with those provided by other ontology
matching system in OAEI 2006.

For the measures below, i indicates the ith
test. |Ri| refers to the number of correct map-
pings according to the gold standard (which is
manually created). |Pi| is the total number of
mappings found automatically by the match-

2http://oaei.ontologymatching.org/2006/

ing system, and |Ii| is the number of correct
mappings found by the matching system for
test i.

1. Precision (p): pi = |Ii|/|Pi|. It reflects
the ratio of the correct mappings among all
mappings discovered by the matcher.

2. Recall (r): ri = |Ii|/|Ri| specifies the ra-
tio of correct mappings found by the matcher
in comparison with total number of mappings
in the golden standard.

3. F-Measure (f): fi = 2∗pi ∗ ri/(pi + ri),
which estimates the reliability of the match
predictions [1].

4. Harmonic mean (H): Harmonic
mean2 is an aggregation of standard mea-
sures such as p, r. Specifically, for har-
monic mean of precision, H(p)=(

∑n
i=1 |Ii|) /

(
∑n

i=1 |Pi|). As for harmonic mean of recall,
H(r) = (

∑n
i=1 |Ii|) / (

∑n
i=1 |Ri|). Here n is

the number of considered tests. We then ob-
tain for the harmonic mean of the F-Measure:
H(f) = 2 ∗H(p) ∗H(r)/(H(p) + H(r)).

4.3 Results and Discussion

We use 23 base matchers such as entity la-
bel, super concepts and sub-concepts. These
matchers are provided by FOAM and can
be found in the class “ManualRuleSimple” in
FOAM API.

4.3.1 The performance of OWA
operators

Figure 2: The performance of different OWA
combination methods

Proceedings of IPMU’08 247

In the first part of the evaluation, we compare
the performance of different OWA operators
for the aggregation of similarity values pro-
vided by the base matchers in FOAM.

Figure 2 shows the harmonic means (over the
entire OAEI 2006 benchmarks data set) of the
precision, recall and f-measure for the differ-
ent operators introduced in Section 3.3.

For these OWA operators, they assign the im-
portance to different positions of the values
to be aggregated in the descending order. For
example, max and min consider the extreme
values, maximal value or minimal value re-
spectively. The first observation is that the
min and max operators show a poor perfor-
mance, as they assign all the weights to only
one matcher. However, the min operator ex-
hibits a very high precision, as it will only
return a match if even the matcher with the
smallest similarity value indicates a match.
Obviously, this selectivity results in a low re-
call. As many as possible shows a slightly
better (but similar) performance as min, as it
also assigns most weights to the matchers with
low similarity values. We observe an increas-
ing performance in terms of f-measure for the
operators from most, the average, to at least
half. The best results in terms of f-measure
are obtained for the at least half operator that
assigns the weights to that half of similarity
values which are the highest ones.

However, it is worth noting that for differ-
ent matching tasks, different operators may
be appropriate. For example, if a high preci-
sion is required, an operator that assigns more
weight to the lower similarities may be ade-
quate, e.g. as many as possible. In any case,
this selection can be performed easily based
on the intuitive meaning of the lexical OWA
operators, without any knowledge about the
specific base matchers.

4.3.2 Comparison between OWA
operator and weighted average

In the second part of the evaluation, we com-
pare the performance of OWA operator with
that of the regular weighted average, which
was previously implemented in the FOAM

Figure 3: The performance of at least half and
weighted average

system. Again, the comparison is done based
on exactly the same base matchers.

In Figure 3, we show the f-measure of all the
ontology pairs. Where the number from 0 to
50 in X-axis indicates the ontology pair be-
tween ontology from 101 to 304 and the ref-
erence one 101. For each pair, one element
is in the reference ontology 101, and another
one is in the test ontology from 101 to 304.
Two curves indicate the f-measure which are
calculated by the at least half OWA operator
and weighted average respectively.

We observe almost no difference in the
f-measure between at least half and the
weighted average for the “easy” cases, i.e. the
ontologies with large overlap. In these cases,
the f-measure is close to 1.

In the harder cases, e.g. ontologies from 32
to 46 (corresponding to OAEI ontologies from
248 to 266), many places have been changed
based on the reference ontology 101 compar-
ing with others. For example, all entity names
in these ontologies have been replaced by ran-
dom strings, and there is no comment avail-
able for the entities. Parts of the class hierar-
chy have been suppressed, expanded or flat-
tened. So the structure between these ontolo-
gies and the reference one are quite different.

In such cases, some base matchers will become
useless if the corresponding features are not
available. The weighted average is not flexible
enough to deal with such cases since it gives
weights to each base matcher independent of
the performance of the matcher. On the other

248 Proceedings of IPMU’08

hand, at least half does not rely on some par-
ticular base matchers. Instead, it will assign
the weights to that half of the matchers that
perform best. On average, we observe an in-
crease in for the f-measure from 0.82 for the
weighted average to 0.86 for the at least half
OWA operator.

The benefits of using OWA combination oper-
ators are actually twofold: We do not need to
assign weights to the individual base matchers
thus do not require any background knowl-
edge about the base matchers. At the same
time we observe an improved performance.

4.3.3 Comparison with other
ontology matching systems

Although the FOAM system did not partici-
pate in the official evaluation contest of OAEI
in 2006, we give our results to compare with
other systems2, based on the same bench-
marks with other systems and using the same
evaluation measures. Since many systems at-
tended the contest, we only compare against
the top five systems.

System H(p) H(r) H(f)
automs 0.94 0.67 0.782
COMA++ 0.96 0.83 0.890
falcon 0.92 0.86 0.889
prior 0.95 0.63 0.758
RiROM 0.96 0.88 0.918
FOAM-WA 0.87 0.78 0.823
FOAM-OWA 0.93 0.80 0.860

Table 1: The comparison between FOAM
(WA and OWA) and other matching systems
based on the benchmarks in OAEI 2006.

In Table 1, we show the harmonic means of
precision and recall and f-measure to give
an overview of the results. From the re-
sults shown in this table, we see that three
matching systems, coma, falcon and RiROM
are relatively close, and that the FOAM sys-
tem – with either weighted average or or-
dered weighted average – provides competi-
tive performance. And it can be seen that
the test using OWA combination operators
outperforms that using the weighted average

based on FOAM.

The best overall performance is exhibited by
the RiROM system. For the RiROM sys-
tem, a key step of strategy selection is used.
That is, if two ontologies have high label sim-
ilarity, then the matching process will rely
more on linguistic based strategies; while if
the two ontologies have high structural simi-
larity, they will employ similarity-propagation
based strategies on them [8]. So RiROM can
perform better by using the flexible strategy
selection.

Our system is outperformed by some systems
like coma, falcon and RiROM. The main rea-
son is that, we just use some simple and
straight matchers. While in other systems,
such as COMA++[5], the graph based match-
ers are used which have been proved that such
kind of matchers can perform well by these
systems. From this the lesson we have learned
is to integrate some sophisticated base match-
ers into FOAM.

Although FOAM-OWA is outperformed by
coma, falcon and RiROM, there is no big dif-
ference between ours and others. For exam-
ple, the maximal difference between ours and
RiROM is 0.058 regarding H(f). Besides, we
still have quite a lot space to improve the per-
formance of our system because of the flexi-
bility of OWA operators and the support from
the existing and ongoing theoretical and prac-
tical study of OWA operators. Furthermore,
ours outperform other systems except the top
three systems. From Table 1, it can be seen
that it is worth to integrate OWA operator
into FOAM as the precision and recall are
both improved. For example, precision is im-
proved from 0.87 to 0.93 and recall is from
0.78 to 0.80.

5 Conclusion and Future Work

It has been proved that, in most cases, com-
bining the results of multiple matching ap-
proaches or matchers is a promising tech-
nique to get better results than just using one
matcher at a time [1, 3, 2, 10]. In this paper,
we integrated OWA aggregation operator into
FOAM to provide a novel and promising so-

Proceedings of IPMU’08 249

lution for ontology matching. We summarize
the answers for those questions given in Sec-
tion 2.

1. Test with more base matchers and
complex ontologies. By testing 23
base matchers and about 50 ontologies,
we can see that At least half opera-
tor outperforms other normal aggrega-
tion operators like average and weighted
average in most cases.

2. Choose different combination oper-
ators. Generally, there are two ways to
choose combination operators. One is ac-
cording to their semantics explained in
Section 3.3. Another way is according to
various tasks which has been analyzed in
our experiments in Section 4.3.1. For ex-
ample, if a high precision is required, an
operator that assigns more weight to the
lower similarities may be adequate, e.g.
as many as possible.

3. Compare with other matching sys-
tems. Although FOAM-OWA is outper-
formed by the top three systems coma,
falcon and RiROM, there is no big dif-
ference (e.g. the maximal difference is
0.058 regarding the harmonic mean of f-
measure). As for the flexibility of OWA
operators, There is still room for improv-
ing the performance of our system. Fur-
thermore, our system outperforms oth-
ers except the top three ones. We have
shown that it is worth to integrate OWA
operator into FOAM as the precision and
recall are both improved comparing pre-
vious version of FOAM.

In the future work, we will extend our current
work along two directions. One is the integra-
tion of machine learning techniques to obtain
OWA weights when rich data sets related to
the test ontologies are available. Another di-
rection is combining OWA weights with the
weights associated to base matchers using the
techniques of the weighted OWA operator [9]
when the base matchers have different impor-
tance.

References

[1] H. Do and E. Rahm. COMA - a system
for flexible combination of schema match-
ing approaches. In Proc. of VLDB’02,
2002.

[2] M. Ehrig and S. Staab. QOM - quick
ontology mapping. In Proc. of ISWC’04,
pages 683–697, 2004.

[3] J. Euzenat and P. Valtchev. Similarity-
based ontology alignment in OWL-Lite.
In Proc. of ECAI’04, pages 333–337,
2004.

[4] Q. Ji, W. Liu, G. Qi, and D. Bell. LCS:
A linguistic combination system for on-
tology matching. In Proc. of KSEM’06,
pages 176–189, 2006.

[5] S. Massmann, D. Engmann, and
E. Rahm. COMA++: Results for the
ontology alignment contest OAEI 2006.
In Proc. of OM’06, 2006.

[6] E. Rahm and P. Bernstein. A survey of
approaches to automatic schema match-
ing. The VLDB Journal, 10(4):334–350,
2001.

[7] P. Shvaiko and J. Euzenat. A survey
of schema-based matching approaches.
Journal on Data Semantics IV, 4(LNCS
3730):146–171, 2005.

[8] J. Tang, Y. Liang, J.Z. Li, and K.H.
Wang. Risk minimization based ontology
matching. In Proc. of AWCC’04, 2004.

[9] V. Torra. The weighted OWA operator.
International Journal of Intelligent Sys-
tems, 12:153–166, 1997.

[10] K. Tu and Y. Yu. Combining muti-
ple schema-matching strategies based on
credibility prediction. In Proc. of DAS-
FAA’05, pages 17–20, 2005.

[11] R.R. Yager. On ordered weighted av-
eraging aggregation operators in multi-
criteria decision making. IEEE Transac-
tions on Systems, Man and Cybernetics,
18(1):183–190, 1988.

250 Proceedings of IPMU’08

