Skip to main content

Event Detection in Wireless Sensor Networks – Can Fuzzy Values Be Accurate?

  • Conference paper
Ad Hoc Networks (ADHOCNETS 2010)

Abstract

Event detection is a central component in numerous wireless sensor network (WSN) applications. In spite of this, the area of event description has not received enough attention. The majority of current event description approaches rely on using precise values to specify event thresholds. However, we believe that crisp values cannot adequately handle the often imprecise sensor readings. In this paper we demonstrate that using fuzzy values instead of crisp ones significantly improves the accuracy of event detection. We also show that our fuzzy logic approach provides higher detection precision than a couple of well established classification algorithms.

A disadvantage of using fuzzy logic is the exponentially growing size of the rule-base. Sensor nodes have limited memory and storing large rule-bases could be a challenge. To address this issue we have developed a number of techniques that help reduce the size of the rule-base by more than 70% while preserving the level of event detection accuracy.

This research work was supported by KOSEF WCU Project R33-2009-000-10110-0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornell Database Group-Cougar, http://www.cs.cornell.edu/bigreddata/cougar/

  2. Govindan, R., Hellerstein, J., Hong, W., Madden, S., Franklin, M., Shenker, S.: The sensor network as a database. Computer Science Department, University of Southern California, Technical Report 02-771 (2002)

    Google Scholar 

  3. Li, S., Son, S.H., Stankovic, J.: Event detection services using data service middleware in distributed sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 502–517. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional query processor for sensor networks. In: SIGMOD, pp. 491–502 (2003)

    Google Scholar 

  5. Franklin, M.: Declarative interfaces to sensor networks. Presentation at NSF Sensor Workshop (2004)

    Google Scholar 

  6. Jiao, B., Son, S., Stankovic, J.: GEM: Generic event service middleware for wireless sensor networks. In: INSS (2005)

    Google Scholar 

  7. Kapitanova, K., Son, S.H.: MEDAL: A compact event description and analysis language for wireless sensor networks. In: INSS (2009)

    Google Scholar 

  8. Tapia, E., Intille, S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Pervasive Computing, pp. 158–175 (2004)

    Google Scholar 

  9. Wren, C., Tapia, E.: Toward scalable activity recognition for sensor networks. In: Location and Context-Awareness (LoCA), pp. 168–185 (2006)

    Google Scholar 

  10. Castro, P., Chiu, P., Kremenek, T., Muntz, R.R.: A probabilistic room location service for wireless networked environments. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 18–34. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Duarte, M., Hu, Y.-H.: Distance based decision fusion in a distributed wireless sensor network. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 392–404. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Chen, T.M., Venkataramanan, V.: Dempster-shafer theory for intrusion detection in ad hoc networks. IEEE Internet Computing, 35–41 (2005)

    Google Scholar 

  13. Wu, H., Siegel, M., Stiefelhagen, R., Yang, J.: Sensor fusion using dempster-shafer theory. In: Proceedings of IEEE IMTC, pp. 21–23 (2002)

    Google Scholar 

  14. Murphy, R.: Dempster-shafer theory for sensor fusion in autonomous mobilerobots. IEEE Transactions on Robotics and Automation, 197–206 (1998)

    Google Scholar 

  15. Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z., Lin, S., Stankovic, J.: Alarm-net: Wireless sensor networks for assisted-living and residential monitoring. University of Virginia, Technical Report CS-2006-13 (2006)

    Google Scholar 

  16. Lymberopoulos, D., Ogale, A., Savvides, A., Aloimonos, Y.: A sensory grammar for inferring behaviors in sensor networks. In: IPSN, pp. 251–259 (2006)

    Google Scholar 

  17. Ghasemzadeh, H., Barnes, J., Guenterberg, E., Jafari, R.: A phonological expression for physical movement monitoring in body sensor networks. In: MASS, pp. 58–68 (2008)

    Google Scholar 

  18. Amft, O., Kusserow, M., Tröster, G.: Probabilistic parsing of dietary activity events. In: BSN, pp. 242–247 (2007)

    Google Scholar 

  19. Gupta, I., Riordan, D., Sampalli, S.: Cluster-head election using fuzzy logic for wireless sensor networks. In: CNSR, pp. 255–260 (2005)

    Google Scholar 

  20. Kim, J., Park, S., Han, Y., Chung, T.: CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In: ICACT, pp. 654–659 (2008)

    Google Scholar 

  21. Lee, H., Cho, T.: Fuzzy logic based key disseminating in ubiquitous sensor networks. In: ICACT, pp. 958–962 (2008)

    Google Scholar 

  22. Kim, B., Lee, H., Cho, T.: Fuzzy key dissemination limiting method for the dynamic filtering-based sensor networks. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS, vol. 4681, pp. 263–272. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Lazzerini, B., Marcelloni, F., Vecchio, M., Croce, S., Monaldi, E.: A fuzzy approach to data aggregation to reduce power consumption in wireless sensor networks. In: NAFIPS, pp. 436–441 (2006)

    Google Scholar 

  24. Kim, J., Cho, T.: Routing path generation for reliable transmission in sensor networks using GA with fuzzy logic based fitness function. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 637–648. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Chiang, S.-Y., Wang, J.-L.: Routing analysis using fuzzy logic systems in wireless sensor networks. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 966–973. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Ren, Q., Liang, Q.: Fuzzy logic-optimized secure media access control (fsmac) protocol wireless sensor networks. In: CIHSPS, pp. 37–43 (2005)

    Google Scholar 

  27. Munir, S.A., Bin, Y.W., Biao, R., Jian, M.: Fuzzy logic based congestion estimation for qos in wireless sensor network. In: WCNC, pp. 4336–4341 (2007)

    Google Scholar 

  28. Xia, F., Zhao, W., Sun, Y., Tian, Y.-C.: Fuzzy Logic Control Based QoS Management in Wireless Sensor/Actuator Networks. Sensors, 3179–3191 (2007)

    Google Scholar 

  29. Liang, Q., Wang, L.: Event detection in wireless sensor networks using fuzzy logic system. In: CIHSPS (2005)

    Google Scholar 

  30. Marin-Perianu, M., Havinga, P.: D-FLER: A distributed fuzzy logic engine for rule-based wireless sensor networks. In: Ichikawa, H., Cho, W.-D., Satoh, I., Youn, H.Y. (eds.) UCS 2007. LNCS, vol. 4836, pp. 86–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  31. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics, 28–44 (1973)

    Google Scholar 

  32. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Inc., Upper Saddle River (1995)

    MATH  Google Scholar 

  33. NRC FuzzyJ Toolkit, http://www.csie.ntu.edu.tw/sylee/courses/fuzzyj/docs/

  34. Building and fire research laboratory, http://smokealarm.nist.gov/

  35. WS4916 Series Wireless Smoke Detector

    Google Scholar 

  36. Geiman, J., Gottuk, D.: Alarm thresholds for smoke detector modeling, pp. 197–208 (2003)

    Google Scholar 

  37. Lewis, D.D.: Naive (Bayes) at forty: The independence assumption in information retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 4–15. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  38. Quinlan, J.R.: C4.5: Programs for Machine Learning (1993)

    Google Scholar 

  39. Hall, M., Frank, E., Holmes, G., Pfahringera, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Kapitanova, K., Son, S.H., Kang, KD. (2010). Event Detection in Wireless Sensor Networks – Can Fuzzy Values Be Accurate?. In: Zheng, J., Simplot-Ryl, D., Leung, V.C.M. (eds) Ad Hoc Networks. ADHOCNETS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17994-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17994-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17993-8

  • Online ISBN: 978-3-642-17994-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics