Abstract
The problem of solvability of infinite games is closely connected with the classical question of uniformization of relations by functions of a given class. We work out this connection and discuss recent results on infinite games that are motivated by the uniformization problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of successor. J. Symb. Logic 34, 166–170 (1969)
Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis. In: Summaries of the Summer Institute of Symbolic Logic, vol. I, pp. 3–50. Cornell Univ., Ithaca (1957)
Church, A.: Logic, arithmetic, and automata. In: Proc. Int. Congr. Math. (1962); Inst. Mittag-Leffler, Djursholm, Sweden, pp. 23–35 (1963)
Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, New York (1974)
Fridman, W.: Formats of winning strategies for six types of pushdown games. In: Montanari, A., et al. (eds.) Proc. 1st Symp. on Games, Automata, Logic, and Formal Verification, GandALF 2010. Electr. Proc. in Theor. Comput. Sci., vol. 25 (2010)
Gale, D., Stewart, F.M.: Infinite games with perfect information. Ann. Math. Studies 28, 245–266 (1953)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Holtmann, M., Kaiser, L., Thomas, W.: Degrees of Lookahead in Regular Infinite Games. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 252–266. Springer, Heidelberg (2010)
Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural numbers with unary predicates. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562–574. Springer, Heidelberg (2006)
Sakarovitch, J.: Elements of Automata Theory. Cambridge Univ. Press, Cambridge (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thomas, W. (2011). Infinite Games and Uniformization. In: Banerjee, M., Seth, A. (eds) Logic and Its Applications. ICLA 2011. Lecture Notes in Computer Science(), vol 6521. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18026-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-18026-2_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18025-5
Online ISBN: 978-3-642-18026-2
eBook Packages: Computer ScienceComputer Science (R0)