Abstract
In the formal analysis of health-care, there is little work that combines probabilistic and temporal reasoning. On the one hand, there are those that aim to support the clinical thinking process, which is characterised by trade-off decision making taking into account uncertainty and preferences, i.e., the process has a probabilistic and decision-theoretic flavour. On the other hand, the management of care, e.g., guidelines and planning of tasks, is typically modelled symbolically using temporal, non-probabilistic, methods. This paper proposes a new framework for combining temporal reasoning with probabilistic decision making. The framework is instantiated with a guideline modelling language combined with probabilistic pharmokinetics and applied to the treatment of diabetes mellitus type 2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andreassen, S., Jensen, F.V., Andersen, S.K., Falck, B., Kjærulff, U., Woldbye, M., Sørensen, A.R., Rosenfalck, A., Jensen, F.: MUNIN – an expert EMG assistant. In: Desmedt, J.E. (ed.) Computer-Aided Electromyography and Expert Systems, pp. 255–277. Elsevier, Amsterdam (1989)
Balser, M., Duelli, C., Reif, W.: Formal semantics of Asbru - an overview. In: Proceedings of the International Conference on Integrated Design and Process Technology, Passadena. Society for Design and Process Science (June 2002)
Beck, J.R., Pauler, S.G.: The Markov process in medical prognosis. Medical Decision Making 3, 419–458 (1983)
de Clercq, P., Kaiser, K., Hasman, A.: Computer-interpretable guideline formalisms. In: ten Teije, A., Miksch, S., Lucas, P.J.F. (eds.) Computer-based Medical Guidelines and Protocols: A Primer and Current Trends, pp. 22–43. IOS Press, Amsterdam (2008)
Fox, J., Das, S.: Safe and Sound: Artificial Intelligence in Hazardous Applications. MIT Press, Cambridge (2000)
Garber, A.J., Duncan, T.G., Goodman, A.M., Mills, D.J., Rohlf, J.L.: Efficacy of metformin in type ii diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am. J. Med. 103(6), 491–507 (1997)
Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2007)
Hermann, L.S., Scherstén, B., Bitzén, P.O., Kjellström, T., Lindgärde, F., Melander, A.: Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. Diabetes Care 16(10), 1100–1109 (1994)
Hommersom, A.J.: On the Application of Formal Methods to Clinical Guidelines. PhD thesis, University of Nijmegen (2008)
Hommersom, A.J., Groot, P.C., Balser, M., Lucas, P.J.F.: Formal methods for verification of clinical practice guidelines. In: ten Teije, A., Miksch, S., Lucas, P.J.F. (eds.) Computer-based Medical Guidelines and Protocols: A Primer and Current Trends, pp. 63–80. IOS Press, Amsterdam (2008)
Hong, Y., Rohatagi, S., Habtemariam, B., Walker, J.R., Schwartz, S.L., Mager, D.E.: Population exposure-response modeling of metformin inpatients with type 2 diabetes mellitus. J. Clin. Pharmacol. 48(6), 696–707 (2008)
Hollenberg, J.P.: Markov cycle trees: a new representation for complex Markov processes (abstr). Medical Decision Making 4, 529 (1984)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)
Lucas, P.J.F., De Bruijn, N., Schurink, K., Hoepelman, A.: A probabilistic and decision-theoretic approach to the management of infectious disease at the icu. Artificial Intelligence in Medicine 19, 251–279 (2000)
NHS. The guidelines manual, http://www.nice.org.uk/media/68D/3C/The_guidelines_manual_2009_-_Chapter_9_Developing_and_wording_guideline_recommendations.pdf
Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J.: Comparing computer-interpretable guideline models: a case-study approach. Journal of the American Medical Informatics Association 10(1), 52–68 (2003)
Reitman, M.L., Schadt, E.E.: Pharmacogenetics of metformin response: a step in the path toward personalized medicine. J. Clin. Invest. 117(5) (2007)
Scarpello, J.H.B., Howlett, H.C.S.: Metformin therapy and clinical uses. Diab. Vasc. Dis. Res. 5(3), 157–167 (2008)
Shahar, Y., Miksch, S., Johnson, P.: The Asgaard Project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in Medicine 14, 29–51 (1998)
Shu, Y., Sheardown, S.A., Brown, C., Owen, R.P., Zhang, S., Castro, R.A., Ianculescu, A.G., Yue, L., Lo, J.C., Burchard, E.G., Brett, C.M., Giacomini, K.M.: Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431 (2007)
Sonnenberg, F.A., Beck, J.R.: Markov models in medical decision making: A practical guide. Medical Decision Making 13(4), 322–338 (1993)
Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and executing clinical gui delines. Artificial Intelligence in Medicine 23, 249–276 (2001)
Timbie, J.W., Hayward, R.A., Vijan, S.: Variation in the net benefit of aggressive cardiovascular risk factor control across the us population of patients with diabetes mellitus. Archives of Internal Medicine 170(12), 1037–1044 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hommersom, A. (2011). Toward Probabilistic Analysis of Guidelines. In: Riaño, D., ten Teije, A., Miksch, S., Peleg, M. (eds) Knowledge Representation for Health-Care. KR4HC 2010. Lecture Notes in Computer Science(), vol 6512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18050-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-18050-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18049-1
Online ISBN: 978-3-642-18050-7
eBook Packages: Computer ScienceComputer Science (R0)