Abstract
Simulations of weighted tree automata (wta) are considered. It is shown how such simulations can be decomposed into simpler functional and dual functional simulations also called forward and backward simulations. In addition, it is shown in several cases (fields, commutative rings, Noetherian semirings, semiring of natural numbers) that all equivalent wta M and N can be joined by a finite chain of simulations. More precisely, in all mentioned cases there is a single wta that simulates both M and N. Those results immediately yield decidability of equivalence provided that the semiring is finitely (and effectively) presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568. Springer, Heidelberg (2002)
Alexandrakis, A., Bozapalidis, S.: Représentations matricielles des séries d’arbre reconnaissables. Informatique Théorique et Applications 23(4), 449–459 (1989)
Béal, M.P., Lombardy, S., Sakarovitch, J.: On the equivalence of ℤ-automata. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 397–409. Springer, Heidelberg (2005)
Béal, M.P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted automata and functional transducers. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 58–69. Springer, Heidelberg (2006)
Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs on Theoret. Comput. Sci., vol. 12. Springer, Heidelberg (1984)
Bloom, S.L., Ésik, Z.: Iteration theories: The Equational Logic of Iterative Processes. Springer, Heidelberg (1993)
Bloom, S.L., Ésik, Z.: An extension theorem with an application to formal tree series. J. Autom. Lang. Combin. 8(2), 145–185 (2003)
Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable series on trees. Acta Inform. 28(4), 351–363 (1991)
Buchholz, P.: Bisimulation relations for weighted automata. Theoret. Comput. Sci. 393(1-3), 109–123 (2008)
Cleophas, L.: Forest FIRE and FIRE wood: Tools for tree automata and tree algorithms. In: FSMNLP, pp. 191–198 (2008)
Eilenberg, S.: Automata, Languages, and Machines. Academic Press, London (1974)
Ésik, Z.: Axiomatizing the equational theory of regular tree languages. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 455–465. Springer, Heidelberg (1998)
Ésik, Z.: Axiomatizing the equational theory of regular tree languages. J. Log. Algebr. Program. 79(2), 189–213 (2010)
Ésik, Z.: Fixed point theory. In: Handbook of Weighted Automata. EATCS Monographs on Theoret. Comput. Sci., pp. 29–66. Springer, Heidelberg (2010)
Ésik, Z., Kuich, W.: A generation of Kozen’s axiomatization of the equational theory of the regular sets. In: Words, Semigroups, and Transductions, pp. 99–114. World Scientific, Singapore (2001)
Ésik, Z., Maletti, A.: Simulation vs. equivalence. In: FCS, pp. 119–122. CSREA Press (2010) (preprint), http://arxiv.org/abs/1004.2426 )
Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Computer Science. World Scientific, Singapore (1998)
Högberg, J., Maletti, A., May, J.: Bisimulation minimisation for weighted tree automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 229–241. Springer, Heidelberg (2007)
Karner, G.: Continuous monoids and semirings. Theoret. Comput. Sci. 318(3), 355–372 (2004)
Klarlund, N., Møller, A.: MONA Version 1.4 User Manual (2001)
Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)
Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inform. and Comput. 110(2), 366–390 (1994)
Lang, S.: Algebra, 2nd edn. Addison Wesley, Reading (1984)
May, J., Knight, K.: TIBURON: A weighted tree automata toolkit. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg (2006)
Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)
Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ésik, Z., Maletti, A. (2011). Simulations of Weighted Tree Automata. In: Domaratzki, M., Salomaa, K. (eds) Implementation and Application of Automata. CIAA 2010. Lecture Notes in Computer Science, vol 6482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18098-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-18098-9_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18097-2
Online ISBN: 978-3-642-18098-9
eBook Packages: Computer ScienceComputer Science (R0)