Skip to main content

Simulations of Weighted Tree Automata

  • Conference paper
Implementation and Application of Automata (CIAA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6482))

Included in the following conference series:

Abstract

Simulations of weighted tree automata (wta) are considered. It is shown how such simulations can be decomposed into simpler functional and dual functional simulations also called forward and backward simulations. In addition, it is shown in several cases (fields, commutative rings, Noetherian semirings, semiring of natural numbers) that all equivalent wta M and N can be joined by a finite chain of simulations. More precisely, in all mentioned cases there is a single wta that simulates both M and N. Those results immediately yield decidability of equivalence provided that the semiring is finitely (and effectively) presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Alexandrakis, A., Bozapalidis, S.: Représentations matricielles des séries d’arbre reconnaissables. Informatique Théorique et Applications 23(4), 449–459 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Béal, M.P., Lombardy, S., Sakarovitch, J.: On the equivalence of ℤ-automata. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 397–409. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Béal, M.P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted automata and functional transducers. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 58–69. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs on Theoret. Comput. Sci., vol. 12. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  6. Bloom, S.L., Ésik, Z.: Iteration theories: The Equational Logic of Iterative Processes. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  7. Bloom, S.L., Ésik, Z.: An extension theorem with an application to formal tree series. J. Autom. Lang. Combin. 8(2), 145–185 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable series on trees. Acta Inform. 28(4), 351–363 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchholz, P.: Bisimulation relations for weighted automata. Theoret. Comput. Sci. 393(1-3), 109–123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cleophas, L.: Forest FIRE and FIRE wood: Tools for tree automata and tree algorithms. In: FSMNLP, pp. 191–198 (2008)

    Google Scholar 

  11. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, London (1974)

    MATH  Google Scholar 

  12. Ésik, Z.: Axiomatizing the equational theory of regular tree languages. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 455–465. Springer, Heidelberg (1998)

    Google Scholar 

  13. Ésik, Z.: Axiomatizing the equational theory of regular tree languages. J. Log. Algebr. Program. 79(2), 189–213 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ésik, Z.: Fixed point theory. In: Handbook of Weighted Automata. EATCS Monographs on Theoret. Comput. Sci., pp. 29–66. Springer, Heidelberg (2010)

    Google Scholar 

  15. Ésik, Z., Kuich, W.: A generation of Kozen’s axiomatization of the equational theory of the regular sets. In: Words, Semigroups, and Transductions, pp. 99–114. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  16. Ésik, Z., Maletti, A.: Simulation vs. equivalence. In: FCS, pp. 119–122. CSREA Press (2010) (preprint), http://arxiv.org/abs/1004.2426 )

  17. Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Computer Science. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  18. Högberg, J., Maletti, A., May, J.: Bisimulation minimisation for weighted tree automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 229–241. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Karner, G.: Continuous monoids and semirings. Theoret. Comput. Sci. 318(3), 355–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual (2001)

    Google Scholar 

  21. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inform. and Comput. 110(2), 366–390 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lang, S.: Algebra, 2nd edn. Addison Wesley, Reading (1984)

    MATH  Google Scholar 

  24. May, J., Knight, K.: TIBURON: A weighted tree automata toolkit. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)

    Book  MATH  Google Scholar 

  26. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ésik, Z., Maletti, A. (2011). Simulations of Weighted Tree Automata. In: Domaratzki, M., Salomaa, K. (eds) Implementation and Application of Automata. CIAA 2010. Lecture Notes in Computer Science, vol 6482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18098-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18098-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18097-2

  • Online ISBN: 978-3-642-18098-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics