Skip to main content

Towards Modelling of Reactive, Goal-Oriented and Hybrid Intelligent Agents Using P Systems

  • Conference paper
Membrane Computing (CMC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6501))

Included in the following conference series:

Abstract

Intelligent agents are classified into various types depending on whether they just react to the stimuli they perceive (reactive) or they develop plans to solve their own goals (proactive or goal-oriented). In practice, agents are a mixture of two layers since they perform reactive or proactive tasks depending on what is the most appropriate at a given time (hybrid agents). Bearing in mind the dynamic organisation of a multi-agent system consisting of any of the above types, it is only natural to consider Population P Systems as a suitable candidate for modelling. In this paper, we describe preliminary work done towards modelling of MAS which include all types of agents. An initial attempt is made to tackle certain issues that have to do with the objects and rules that define each agent operation. Alongside the alternative solutions, we present a concrete example to demonstrate our findings and raise discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardini, F., Gheorghe, M.: Population P Systems. Journal of Universal Computer Science 10(5), 509–539 (2004)

    MathSciNet  Google Scholar 

  2. Coakley, S.: Formal Software Architecture for Agent-Based Modelling in Biology. PhD thesis, Dept. of Comp. Science, Univ. of Sheffield, UK (2007)

    Google Scholar 

  3. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proc. of the 6th Conference on Artificial Intelligence, pp. 677–682 (1987)

    Google Scholar 

  4. Kefalas, P., Holcombe, M., Eleftherakis, G., Gheorghe, M.: A formal method for the development of agent-based systems. In: Plekhanova, V. (ed.) Intelligent Agent Software Engineering, pp. 68–98. Idea Publishing Group Co., USA (2003)

    Chapter  Google Scholar 

  5. Kefalas, P., Stamatopoulou, I.: Modelling of multi-agent systems: Experiences with membrane computing and future challenges. In: Applications of Membrane computing, Concurrency and Agent-based modelling in POPulation biology (AMCA-POP), Satellite event of the 11th Conference on Membrane Computing ( to appear, 2010)

    Google Scholar 

  6. Kelemen, J., Kelemenova, A., Paun, G.: Preview of P colonies: A biochemically inspired computing model. In: Pollack, J.B., Bedau, M., Husbands, P., Ikegami, T., Watson, R.A. (eds.) Proceedings of the 9th Intern. Conference on the Simulation and Synthesis of Living Systems (Alife IX), pp. 82–86. MIT Press, Cambridge (2004)

    Google Scholar 

  7. Martin-Vide, C., Păun, G., Pazos, J., Rodriguez-Paton, A.: Tissue P systems. Theoretical Computer Science 296, 295–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 473–484. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  9. Sakellariou, I., Kefalas, P., Stamatopoulou, I.: Enhancing NetLogo to simulate BDI communicating agents. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 263–275. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Stamatopoulou, I., Gheorghe, M., Kefalas, P.: Modelling dynamic configuration of biology-inspired multi-agent systems with Communicating X-machines and Population P Systems. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 389–401. Springer, Heidelberg (2005a)

    Chapter  Google Scholar 

  11. Stamatopoulou, I., Kefalas, P., Eleftherakis, G., Gheorghe, M.: A modelling language and tool for Population P Systems. In: PCI 2005 (2005b)

    Google Scholar 

  12. Stamatopoulou, I., Sakellariou, I., Kefalas, P., Eleftherakis, G.: OPERAS for social insects: Formal modelling and prototype simulation. Special Issue of Romanian Journal of Information Science and Technology (ROMJIST) on Natural Computing — from biology to computer science and back to applications 11(3), 267–280 (2008)

    Google Scholar 

  13. Wilensky, U.: Netlogo Center for Connected Learning and Computer-based Modelling. Northwestern University, Evanston, IL (1999), http://ccl.northwestern.edu/netlogo

  14. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowledge Engineering Review 10(2), 115–152 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kefalas, P., Stamatopoulou, I. (2010). Towards Modelling of Reactive, Goal-Oriented and Hybrid Intelligent Agents Using P Systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. CMC 2010. Lecture Notes in Computer Science, vol 6501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18123-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18123-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18122-1

  • Online ISBN: 978-3-642-18123-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics