Skip to main content

Security Reductions of the Second Round SHA-3 Candidates

  • Conference paper
Information Security (ISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6531))

Included in the following conference series:

Abstract

In 2007, the US National Institute for Standards and Technology announced a call for the design of a new cryptographic hash algorithm in response to vulnerabilities identified in existing hash functions, such as MD5 and SHA-1. NIST received many submissions, 51 of which got accepted to the first round. At present, 14 candidates are left in the second round. An important criterion in the selection process is the SHA-3 hash function security and more concretely, the possible security reductions of the hash function to the security of its underlying building blocks. While some of the candidates are supported with firm security reductions, for most of the schemes these results are still incomplete. In this paper, we compare the state of the art provable security reductions of the second round SHA-3 candidates. Surprisingly, we derive some security bounds from the literature, which the hash function designers seem to be unaware of. Additionally, we generalize the well-known proof of collision resistance preservation, such that all SHA-3 candidates with a suffix-free padding are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl hash function. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 88–105. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Andreeva, E., Mennink, B., Preneel, B.: Security reductions of the second round SHA-3 candidates. Full version of this paper. Cryptology ePrint Archive, Report 2010/381 (2010)

    Google Scholar 

  3. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.: SHA-3 proposal BLAKE (2009)

    Google Scholar 

  5. Bellare, M., Kohno, T., Lucks, S., Ferguson, N., Schneier, B., Whiting, D., Callas, J., Walker, J.: Provable security support for the skein hash family (2009)

    Google Scholar 

  6. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 Proposal: ECHO (2009)

    Google Scholar 

  7. Bernstein, D.: CubeHash specification (2009)

    Google Scholar 

  8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK sponge function family (2009)

    Google Scholar 

  10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions (ECRYPT Hash Workshop) (2007)

    Google Scholar 

  11. Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of hash functions and optimal bounds of popular domain extensions. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 199–218. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH hash function. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 168–191. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. Cryptology ePrint Archive, Report 2007/278 (2007)

    Google Scholar 

  14. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function (2009)

    Google Scholar 

  15. Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient blockcipher-based hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 526–541. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Bouillaguet, C., Fouque, P.A., Leurent, G.: Security analysis of SIMD (2010)

    Google Scholar 

  18. Bouillaguet, C., Fouque, P.A., Shamir, A., Zimmer, S.: Second preimage attacks on dithered hash functions. Cryptology ePrint Archive, Report 2007/395 (2007)

    Google Scholar 

  19. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A., Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard, J.R., Thuillet, C., Videau, M.: Shabal, a Submission to NIST’s Cryptographic Hash Algorithm Competition (2009)

    Google Scholar 

  20. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  22. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa (2009)

    Google Scholar 

  23. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damgård for practical applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Function Family (2009)

    Google Scholar 

  25. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: Engineering comparison of SHA-3 candidates (2010)

    Google Scholar 

  26. Fleischmann, E., Forler, C., Gorski, M.: Classification of the SHA-3 candidates. Cryptology ePrint Archive, Report 2008/511 (2008)

    Google Scholar 

  27. Fouque, P.A., Stern, J., Zimmer, S.: Cryptanalysis of tweaked versions of SMASH and reparation. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 136–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Gauravaram, P., Bagheri, N.: ECHO compression function is not indifferentiable from a FIL-RO (2010)

    Google Scholar 

  29. Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.: Grøstl – a SHA-3 candidate (2009)

    Google Scholar 

  30. Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjølsnes, S.F.: Cryptographic Hash Function BLUE MIDNIGHT WISH (2009)

    Google Scholar 

  31. Halevi, S., Hall, W., Jutla, C.: The Hash Function “Fugue” (2009)

    Google Scholar 

  32. Küçük, Ö.: The Hash Function Hamsi (2009)

    Google Scholar 

  33. Lai, X., Massey, J.: Hash function based on block ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  34. Leurent, G., Bouillaguet, C., Fouque, P.A.: SIMD is a Message Digest (2009)

    Google Scholar 

  35. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  36. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  37. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

    Google Scholar 

  38. National Institute for Standards and Technology. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family (November 2007)

    Google Scholar 

  39. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  40. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  41. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  43. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M., Szekely, A.: High-speed hardware implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510 (2009)

    Google Scholar 

  44. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  45. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  46. Wu, H.: The Hash Function JH (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andreeva, E., Mennink, B., Preneel, B. (2011). Security Reductions of the Second Round SHA-3 Candidates. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds) Information Security. ISC 2010. Lecture Notes in Computer Science, vol 6531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18178-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18178-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18177-1

  • Online ISBN: 978-3-642-18178-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics