Skip to main content

Proving Stabilization of Biological Systems

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6538))

Abstract

We describe an efficient procedure for proving stabilization of biological systems modeled as qualitative networks or genetic regulatory networks. For scalability, our procedure uses modular proof techniques, where state-space exploration is applied only locally to small pieces of the system rather than the entire system as a whole. Our procedure exploits the observation that, in practice, the form of modular proofs can be restricted to a very limited set. For completeness, our technique falls back on a non-compositional counterexample search. Using our new procedure, we have solved a number of challenging published examples, including: a 3-D model of the mammalian epidermis; a model of metabolic networks operating in type-2 diabetes; a model of fate determination of vulval precursor cells in the C. elegans worm; and a model of pair-rule regulation during segmentation in the Drosophila embryo. Our results show many orders of magnitude speedup in cases where previous stabilization proving techniques were known to succeed, and new results in cases where tools had previously failed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher, J., Henzinger, T.A.: Executable biology. In: Proc. WSC, pp. 1675–1682 (2006)

    Google Scholar 

  2. Bonzanni, N., Feenstra, A.K., Fokkink, W., Krepska, E.: What can formal methods bring to systems biology? In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 16–22. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Heath, J.: The equivalence between biology and computation. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS (LNBI), vol. 5688, pp. 18–25. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Fisher, J., et al.: Predictive modeling of signaling crosstalk during C. elegans Vulval Development. PLoS CB 3(5), e92 (2007)

    Google Scholar 

  5. Heath, J., Kwiatkowska, M., Norman, G., Parker, G., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Clarke, E., Faeder, J., Langmead, C., Harris, L., Jha, S., Legay, A.: Statistical model checking in BioLab: Applications to the automated analysis of T-Cell receptor signaling pathway. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 231–250. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theo. Comp. Sci. 325(1), 25–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zotin, A.I.: The stable state of organisms in thermodynamic bases of biological processes: Physiological Reactions and Adaptations. De Gruyter, Berlin (1990)

    Book  Google Scholar 

  9. Jones, C.: Specification and design of (parallel) programs. In: IFIP Congr. 1983, pp. 321–332 (1983)

    Google Scholar 

  10. Pnueli, A.: In transition from global to modular temporal reasoning about programs. In: Logics and Models of Concurrent Systems, pp. 123–144 (1985)

    Google Scholar 

  11. Abadi, M., Lamport, L.: Composing specifications. TOPLAS 15(1), 73–132 (1993)

    Article  Google Scholar 

  12. Schaub, M., et al.: Qualitative networks: A symbolic approach to analyze biological signaling networks. BMC Systems Biology 1, 4 (2007)

    Google Scholar 

  13. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bullet. of Math. Bio. 55(2), 247–276 (1995)

    Article  MATH  Google Scholar 

  14. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying critical systems by means of the synchronous data-flow programming language LUSTRE. IEEE Transactions on Software Engineering 18(9), 785–793 (1992)

    Article  MATH  Google Scholar 

  16. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS, pp. 46–57 (1977)

    Google Scholar 

  17. Beyer, A., Fisher, J.: Unpublished results (2009)

    Google Scholar 

  18. Beyer, A., et al.: Mechanistic insights into metabolic disturbance during type-2 diabetes and obesity using qualitative networks. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds.) Transactions on Computational Systems Biology XII. LNCS (LNBI), vol. 5945, pp. 146–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Sanchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis fo the pair-rule cross-regulatory module. Journal of Theoretical Biology 224, 517–537 (2003)

    Article  Google Scholar 

  20. Ropers, D., Baldazzi, V., de Jong, H.: Model reduction using piecewise-linear approximations preserves dynamic properties of the carbon starvation response in E. coli. IEEE/ACM Trans. on Comp. Bio. and Bioinf. 99 (2009) (preprint)

    Google Scholar 

  21. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling. IEE Systems Biology 1(1), 170–183 (2004)

    Article  Google Scholar 

  22. Podelski, A., Wagner, S.: A sound and complete proof rule for region stability of hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 750–753. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Oehlerking, J., Theel, O.: Decompositional construction of Lyapunov functions for hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 276–290. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that programs eventually do something good. In: Proc. POPL, pp. 265–276 (2007)

    Google Scholar 

  25. Moore, J.S.: A mechanically checked proof of a multiprocessor result via a uniprocessor view. FMSD 14(2), 213–228 (1999)

    Google Scholar 

  26. McMillan, K.: Circular compositional reasoning about liveness. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–345. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  27. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. POPL, pp. 238–252 (1977)

    Google Scholar 

  28. Colón, M.A., Sipma, H.B.: Practical Methods for Proving Program Termination. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Lowell, S., et al.: Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 4, 10(9), 491–500 (2000)

    Article  Google Scholar 

  30. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. In: Proc. FMSD, vol. 19(1), pp. 7–34 (2001)

    Google Scholar 

  31. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In: Proc. FMICS. ENTCS, vol. 66(2), pp. 160–177 (2002)

    Google Scholar 

  32. McMillan, K.: Symbolic model checking (PhD thesis). Kluwer (1993)

    Google Scholar 

  33. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Cimatti, A., et al.: NuSMV 2: An openSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  35. Holzmann, G.: The SPIN model checker: Primer and ref. manual. Wesley (2003)

    Google Scholar 

  36. Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving stabilization of biological systems: Appendix. Technical Teport IR-CS-63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cook, B., Fisher, J., Krepska, E., Piterman, N. (2011). Proving Stabilization of Biological Systems. In: Jhala, R., Schmidt, D. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2011. Lecture Notes in Computer Science, vol 6538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18275-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18275-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18274-7

  • Online ISBN: 978-3-642-18275-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics