Abstract
In this paper we propose an efficient method of discovering Jumping Emerging Patterns with Occurrence Counts for the use in classification of data with numeric or nominal attributes. This new extension of Jumping Emerging Patterns proved to perform well when classifying image data and here we experimentally compare it to other methods, by using generalized border-based pattern mining algorithm to build the classifier.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: KDD 1999: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52. ACM, New York (1999)
Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerging patterns. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 30–42. Springer, Heidelberg (1999)
Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowledge and Information Systems 8(2), 178–202 (2005)
Li, J., Dong, G., Ramamohanarao, K.: Instance-based classification by emerging patterns. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 191–200. Springer, Heidelberg (2000)
Li, J., Dong, G., Ramamohanarao, K., Wong, L.: DeEPs: A new instance-based lazy discovery and classification system. Machine Learning 54(2), 99–124 (2004)
Li, J., Dong, G., Ramamohanarao, K.: Making use of the most expressive jumping emerging patterns for classification. Knowledge and Information Systems 3(2), 1–29 (2001)
Li, J., Ramamohanarao, K., Dong, G.: The space of jumping emerging patterns and its incremental maintenance algorithms. In: ICML 2000: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 551–558. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Fan, H., Ramamohanarao, K.: An efficient single-scan algorithm for mining essential jumping emerging patterns for classification. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 456–462. Springer, Heidelberg (2002)
Fan, H., Ramamohanarao, K.: Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers. IEEE Transactions on Knowledge and Data Engineering 18(6), 721–737 (2006)
Terlecki, P., Walczak, K.: On the relation between rough set reducts and jumping emerging patterns. Information Sciences 177(1), 74–83 (2007)
Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and delta-discriminative emerging pattern. In: Proceedings of 13th International Conference on Knowledge Discovery and Data Mining, San Jose, California, pp. 430–439 (2007)
Li, J., Wong, L.: Emerging patterns and gene expression data. Genome Informatics 12, 3–13 (2001)
Li, J., Wong, L.: Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 18, 725–734 (2002)
Zaïane, O.R., Han, J., Zhu, H.: Mining recurrent items in multimedia with progressive resolution refinement. In: Proceedings of the 16th International Conference on Data Engineering, San Diego, CA, USA, pp. 461–470 (2000)
Ong, K.-L., Ng, W.-K., Lim, E.-P.: Mining multi-level rules with recurrent items using FP’-Tree. In: Proceedings of the Third International Conference on Information, Communications and Signal Processing (2001)
Rak, R., Kurgan, L.A., Reformat, M.: A tree-projection-based algorithm for multi-label recurrent-item associative-classification rule generation. Data and Knowledge Engineering 64(1), 171–197 (2008)
Kobyliński, Ł., Walczak, K.: Jumping emerging patterns with occurrence count in image classification. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 904–909. Springer, Heidelberg (2008)
Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans. on Patt. Anal. and Machine Intell. 23, 947–963 (2001)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Lewis, D.D., Williams, K.: Reuters-21578 corpus ApteMod version
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kobyliński, Ł., Walczak, K. (2011). Efficient Mining of Jumping Emerging Patterns with Occurrence Counts for Classification. In: Peters, J.F., Skowron, A., Chan, CC., Grzymala-Busse, J.W., Ziarko, W.P. (eds) Transactions on Rough Sets XIII. Lecture Notes in Computer Science, vol 6499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18302-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-18302-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18301-0
Online ISBN: 978-3-642-18302-7
eBook Packages: Computer ScienceComputer Science (R0)