Abstract
Relative worst order analysis is a supplement or alternative to competitive analysis which has been shown to give results more in accordance with observed behavior of online algorithms for a range of different online problems. The contribution of this paper is twofold. First, it adds the static list accessing problem to the collection of online problems where relative worst order analysis gives better results. Second, and maybe more interesting, it adds the non-trivial supplementary proof technique of list factoring to the theoretical toolbox for relative worst order analysis.
This work was supported in part by the Danish Natural Science Research Council.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S.: Improved randomized on-line algorithms for the list update problem. SIAM Journal on Computing 27(3), 682–693 (1998)
Albers, S., Lauer, S.: On list update with locality of reference. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 96–107. Springer, Heidelberg (2008)
Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP algorithm for the list update problem. Information Processing Letters 56, 135–139 (1995)
Albers, S., Westbrook, J.: Self-organizing data structures. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms — The State of the Art. LNCS, vol. 1442, pp. 13–51. Springer, Heidelberg (1998)
Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence of paging strategies. In: 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 229–237 (2007)
Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: List update with locality of reference. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 399–410. Springer, Heidelberg (2008)
Bachrach, R., El-Yaniv, R.: Online list accessing algorithms and their applications: Recent empirical evidence. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 53–62 (1997)
Ben-David, S., Borodin, A.: A New Measure for the Study of On-Line Algorithms. Algorithmica 11, 73–91 (1994)
Bentley, J.L., McGeoch, C.C.: Amortized analyses of self-organizing sequential search heuristics. Communications of the ACM 28, 404–411 (1985)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. ACM Transactions on Algorithms 3(2), article 22 (2007)
Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied to paging. Journal of Computer and System Sciences 73, 818–843 (2007)
Boyar, J., Irani, S., Larsen, K.S.: A Comparison of Performance Measures for Online Algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009)
Boyar, J., Medvedev, P.: The relative worst order ratio applied to seat reservation. ACM Transactions on Algorithms 4(4), article 48 (2008)
Dorrigiv, R., Ehmsen, M.R., López-Ortiz, A.: Parameterized analysis of paging and list update algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 104–115. Springer, Heidelberg (2010)
Dorrigiv, R., López-Ortiz, A.: A Survey of Performance Measures for On-line Algorithms. SIGACT News 36(3), 67–81 (2005)
Ehmsen, M.R., Kohrt, J.S., Larsen, K.S.: List factoring and relative worst order analysis (2010); arXiv:1009.5787
Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Comparing online algorithms for bin packing problems. Journal of Scheduling (accepted for publication)
Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Separating scheduling algorithms with the relative worst order ratio. Journal of Combinatorial Optimization 12(4), 362–385 (2006)
Garefalakis, T.: A new family of randomized algorithms for list accessing. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 200–216. Springer, Heidelberg (1997)
Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics 17(2), 416–429 (1969)
Irani, S.: Two results on the list update problem. Information Processing Letters 38(6), 301–306 (1991)
Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)
Kenyon, C.: Best-fit bin-packing with random order. In: 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 359–364 (1996)
Koutsoupias, E., Papadimitriou, C.H.: Beyond Competitive Analysis. SIAM Journal on Computing 30(1), 300–317 (2001)
Krumke, S.O., de Paepe, W.E., Rambau, J., Stougie, L.: Bincoloring. Theoretical Computer Science 407(1-3), 231–241 (2008)
McCabe, J.: On serial files with relocatable records. Operations Research 13(4), 609–618 (1965)
Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms for the list update problem. Algorithmica 11, 15–32 (1994)
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)
Teia, B.: A lower bound for randomized list update algorithms. Information Processing Letters 47, 5–9 (1993)
Young, N.: The k-server dual and loose competitiveness for paging. Algorithmica 11, 525–541 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ehmsen, M.R., Kohrt, J.S., Larsen, K.S. (2011). List Factoring and Relative Worst Order Analysis. In: Jansen, K., Solis-Oba, R. (eds) Approximation and Online Algorithms. WAOA 2010. Lecture Notes in Computer Science, vol 6534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18318-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-18318-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18317-1
Online ISBN: 978-3-642-18318-8
eBook Packages: Computer ScienceComputer Science (R0)