Skip to main content

Randomized OBDDs for the Most Significant Bit of Multiplication Need Exponential Size

  • Conference paper
SOFSEM 2011: Theory and Practice of Computer Science (SOFSEM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6543))

  • 944 Accesses

Abstract

Integer multiplication as one of the basic arithmetic functions has been in the focus of several complexity theoretical investigations and ordered binary decision diagrams (OBDDs) are one of the most common dynamic data structures for Boolean functions. Only two years ago, the question whether the deterministic OBDD complexity of the most significant bit of integer multiplication is exponential has been answered affirmatively. Since probabilistic methods have turned out to be useful in almost all areas of computer science, one may ask whether randomization can help to represent the most significant bit of integer multiplication in smaller size. Here, it is proved that the randomized OBDD complexity is also exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablayev, F.: Randomization and nondeterminism are incomparable for ordered read-once branching programs. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 195–202. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Ablayev, F., Karpinski, M.: On the power of randomized ordered branching programs. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 348–356. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  3. Ablayev, F., Karpinski, M.: A lower bound for integer multiplication on randomized ordered read-once branching programs. Information and Computation 186(1), 78–89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollig, B.: On the OBDD complexity of the most significant bit of integer multiplication. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 306–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bollig, B.: Integer multiplication and the complexity of binary decision diagrams. EATCS Bulletin 98, 78–106 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Bollig, B.: Larger lower bounds on the OBDD complexity of integer multiplication. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 212–223. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Bollig, B.: A larger lower bound on the OBDD complexity of the most significant bit of multiplication. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 255–266. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Bollig, B., Waack, S., Woelfel, P.: Parity graph-driven read-once branching programs and an exponential lower bound for integer multiplication. Theoretical Computer Science 362, 86–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bollig, B., Woelfel, P.: A read-once branching program lower bound of Ω(2n/4) for integer multiplication using universal hashing. In: Proc. of 33rd STOC, pp. 419–424 (2001)

    Google Scholar 

  10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  11. Bryant, R.E.: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Trans. on Computers 40, 205–213 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. De, A., Kurur, P., Saha, C., Sapthariski, R.: Fast integer multiplication using modular arithmetic. In: Proc.of 40th STOC, pp. 499–506 (2008)

    Google Scholar 

  13. Fürer, M.: Faster integer multiplication. In: Proc. of 39th STOC, pp. 57–66 (2007)

    Google Scholar 

  14. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of bounded depth. In: Proc. 28th FOCS 1987, pp. 99–110 (1987)

    Google Scholar 

  15. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  16. Kremer, I., Nisan, N., Ron, D.: On Randomized One-Round Communication Complexity. Computational Complexity 8(1), 21–49 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  18. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric communication complexity. Journal of Computer and System Science 57(1), 37–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ponzio, S.: A lower bound for integer multiplication with read-once branching programs. SIAM Journal on Computing 28, 798–815 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sauerhoff, M.: Lower bounds for randomized read-k-times branching programs. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 103–115. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Sauerhoff, M., Woelfel, P.: Time-space trade-off lower bounds for integer multiplication and graphs of arithmetic functions. In: Proc. of 35th STOC, pp. 186–195 (2003)

    Google Scholar 

  22. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sen, P., Venkatesh, S.: Lower bounds for predecessor searching in the cell probe model. Journal of Computer and System Sciences 74(3), 364–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smirnov, D.: Shannon’s information methods for lower bounds for probabilistic communication complexity. Master’s thesis, Moskow University (1988)

    Google Scholar 

  25. Wegener, I.: Branching Programs and Binary Decision Diagrams - Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)

    Google Scholar 

  26. Woelfel, P.: New bounds on the OBDD-size of integer multiplication via universal hashing. Journal of Computer and System Science 71(4), 520–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bollig, B., Gillé, M. (2011). Randomized OBDDs for the Most Significant Bit of Multiplication Need Exponential Size. In: Černá, I., et al. SOFSEM 2011: Theory and Practice of Computer Science. SOFSEM 2011. Lecture Notes in Computer Science, vol 6543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18381-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18381-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18380-5

  • Online ISBN: 978-3-642-18381-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics